Rewriting my code from ground up. Now readings are made per octave with a struct. No MIDI is implemented yet, still debugging readings

This commit is contained in:
əlemi 2019-03-04 18:54:22 +01:00
parent d8e545a50c
commit 55ab943ecd

View file

@ -18,159 +18,128 @@
#define Oct4 10
#define noteOffset 36
#define offCounter 0
#define MINUTE 60000
#include <MIDI.h>
#include <HID.h>
MIDI_CREATE_DEFAULT_INSTANCE();
//#include <MIDI.h>
//#include <HID.h>
//MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct OctaveStatus {
bool stat[12];
int nOct;
} octst;
int note[12] = {
C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B }; // Note Pins above
int octave[4] = {
Oct1, Oct2, Oct3, Oct4 }; // Octave Pins above
int ledPins[12]{
19, 18, 17, 16, 15, 14, 2, 3, 4, 5, 6, 0 };
int noteCounter[49] = { 0 };
boolean status[49] = { LOW };
boolean flip[49] = { LOW };
boolean buffer = LOW;
int clock = 0;
octst buff;
int octBuffer;
byte noteBuffer;
byte velocity = 100; // Placeholder. Will need something to change it
int channel = 7; // Placeholder. Will need something to change it
int bpm = 120; // Placeholder. Will need something to change it
int gate = 300; // Placeholder. Will need something to change it
unsigned long nextBeat = 0;
int step = 0;
int lastStep = 0;
boolean notePlayed = LOW;
void setup()
{
void setup() {
for (int cOctave = 0; cOctave < 4; cOctave++) {
pinMode(octave[cOctave], OUTPUT);
}
for (int cNote = 0; cNote < 12; cNote++) {
pinMode(note[cNote], INPUT);
}
MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200);
nextBeat = millis() + (MINUTE / bpm);
for (int cLed = 0; cLed < 12; cLed++) {
pinMode(ledPins[cLed], OUTPUT);
}
// MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200);
// nextBeat = millis() + (MINUTE / bpm);
for (int cLed = 0; cLed < 12; cLed++) {
digitalWrite(ledPins[cLed], HIGH);
delay(100);
}
for (int cLed = 0; cLed < 12; cLed++) {
digitalWrite(ledPins[cLed], LOW);
delay(100);
}
pinMode(50, OUTPUT);
}
void loop() {
if (millis() < nextBeat) return;
notePlayed = LOW;
while (notePlayed == LOW) {
cleanScan();
arp();
for (clock = 0; clock < 4; clock++) {
digitalWrite(octave[clock], HIGH);
buff = scan(clock);
digitalWrite(octave[clock], LOW);
//clean = clearOct(buff[0], buff[1], buff[2], buff[3], buff[4]);
debug(buff);
serialDebug(buff);
}
nextBeat += (MINUTE / bpm);
}
void cleanScan() {
bool debouncedRead(int pin) {
if (digitalRead(pin) == HIGH) {
if (digitalRead(pin) == HIGH) {
if (digitalRead(pin) == HIGH) {
if (digitalRead(pin) == HIGH) {
if (digitalRead(pin) == HIGH) {
return HIGH;
}
}
}
}
}
return LOW;
}
octst scan(int nOct) {
int c;
for (c = 0; c < 49; c++) noteCounter[c] = 0;
scan();
for (c = 0; c < 49; c++) {
if (status[c] == HIGH) noteCounter[c]++;
octst output;
output.nOct = nOct;
for (c = 0; c < 12; c++) {
output.stat[c] = digitalRead(note[c]);
// delay(50);
}
scan();
for (c = 0; c < 49; c++) {
if (status[c] == HIGH) noteCounter[c]++;
return output;
}
scan();
for (c = 0; c < 49; c++) {
if (status[c] == HIGH) noteCounter[c]++;
/*octst clearOct(octst o1, octst o2, octst o3, octst o4, octst o5) {
octst output;
output.nOct = o1.nOct;
for (int c = 0; c < 12; +c++) {
if (o1.stat[c] && o2.stat[c] && o3.stat[c] && o4.stat[c] && o5.stat[c]) output.stat[c] = HIGH;
else output.stat[c] = LOW;
}
for (c = 0; c < 49; c++) {
if (noteCounter[c] == 3) status[c] = HIGH;
else status[c] = LOW;
return output;
}*/
void debug(octst input) {
int c;
for (c = 0; c < 12; c++) {
digitalWrite(ledPins[c], input.stat[c]);
}
delay(5);
for (c = 0; c < 12; c++) {
digitalWrite(ledPins[c], LOW);
}
}
void send() {
for (int c = 48; c >= 0; c--) {
if (flip[c] == HIGH) {
flip[c] = LOW;
if (noteCounter[c] > 0) {
noteCounter[c]--;
}
else {
noteCounter[c] = offCounter;
noteBuffer = c + noteOffset;
if (status[c] == HIGH) {
MIDI.sendNoteOn(noteBuffer, velocity, channel);
}
else if (status[c] == LOW) {
MIDI.sendNoteOff(noteBuffer, velocity, channel);
}
}
}
void serialDebug(octst input) {
for (int c = 0; c < 12; c++) {
Serial.print(input.stat[c]);
}
Serial.println("");
}
void playNote(int c, boolean status) {
if (status == HIGH) {
MIDI.sendNoteOn(c + noteOffset, velocity, channel);
}
else if (status == LOW) {
MIDI.sendNoteOff(c + noteOffset, velocity, channel);
}
}
void arp() {
step++;
while (step < 49 && status[step] == LOW) {
step++;
}
if (step == 49) {
step = 0;
}
else {
playNote(lastStep, LOW);
playNote(step, HIGH);
lastStep = step;
notePlayed = HIGH;
}
return;
}
void scan() {
for (int cOctave = 0; cOctave < 4; cOctave++) {
octBuffer = 12 * cOctave;
digitalWrite(octave[cOctave], HIGH);
for (int cNote = 0; cNote < 12; cNote++) {
buffer = digitalRead(note[cNote]);
if (buffer ^ status[cNote + octBuffer]) {
status[cNote + octBuffer] = buffer;
flip[cNote + octBuffer] = HIGH;
}
else {
flip[cNote + octBuffer] = LOW;
}
}
digitalWrite(octave[cOctave], LOW);
}
}
int nPressed() {
int c, n = 0;
for (c = 0; c < 49; c++) {
if (status[c] == HIGH) {
n++;
}
}
/* debugLed(int c) {
switch (c) {
case 0: digitalWrite(2, HIGH);
break;
case 1: digitalWrite(3, HIGH);
break;
case 2: digitalWrite(4, HIGH);
break;
case 3: digitalWrite(2, LOW);
digitalWrite(3, LOW);
digitalWrite(4, LOW);
break;
}
}*/