Now keyboard waits for MIDI clock and plays 2 notes per beat when in arpeggiator

This commit is contained in:
əlemi 2019-03-09 19:14:18 +01:00
parent 96a4142c0f
commit 5bd20dab8c

View file

@ -9,37 +9,40 @@
MIDI_CREATE_DEFAULT_INSTANCE(); MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note
bool stat[12]; bool stat[12];
int nOct; int nOct;
} octst; } octst;
// PIN DECLARATIONS // PIN DECLARATIONS
int note[12] = { // Pins used to read each note (C is 0, B is 11) int note[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 }; 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int octave[4] = { // Pins associated to each octave's contact bar int octave[4] = { // Pins associated to each octave's contact bar
12, 9, 8, 10 }; 12, 9, 8, 10 };
int sendPin[3] = { // Pins used as sender for capacitive touch buttons int sendPin[3] = { // Pins used as sender for capacitive touch buttons
5, 4, 16 }; 5, 4, 16 };
int receivePin[3] = { // Pins used as receiver for capacitive touch buttons int receivePin[3] = { // Pins used as receiver for capacitive touch buttons
6, 3, 17 }; 6, 3, 17 };
// GLOBAL SETTINGS // GLOBAL SETTINGS
bool raw; // Signal is sent when key is detected bool raw; // Signal is sent when key is detected
// PLACEHOLDERS // PLACEHOLDERS
byte velocity = 100; // byte velocity = 100; //
byte channel = 1; // byte channel = 1; //
int bpm = 360; // int bpm = 360; //
unsigned long gate = 50; // ms of keypress if arpeggiator unsigned long gate = 50; // ms of keypress if arpeggiator
unsigned long nextBeat = 0; // Used to keep track of beats. Useless if receiving MIDI clock. unsigned long nextBeat = 0; // Used to keep track of beats. Useless if receiving MIDI clock.
// SYSTEM VARIABLES // SYSTEM VARIABLES
int clock = 0; // Used if arp to cycle through notes int arp = 0; // Keeps track of last played note if arpeggiating
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed int midiclock = 0; // Used to sync with MIDI clock
bool kboard[49]; // Last status of keyboard int semA = 0; // Basic semaphore implementation with global counter
bool bCapStat[3]; // Last status of Capacitive Buttons int semB = 0;
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[49]; // Last status of keyboard
bool bCapStat[3]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[3]; CapacitiveSensor* bCap[3];
@ -50,26 +53,27 @@ void setup() {
for (int cNote = 0; cNote < 12; cNote++) { for (int cNote = 0; cNote < 12; cNote++) {
pinMode(note[cNote], INPUT); pinMode(note[cNote], INPUT);
} }
for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s) bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
bCapStat[cButton] = LOW; // Button starts LOW bCapStat[cButton] = LOW; // Button starts LOW
} }
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF); MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200); Serial.begin(115200);
pinMode(2, INPUT_PULLUP); // Used for RAW switch pinMode(2, INPUT_PULLUP); // Used for RAW switch
} }
void loop() { void loop() {
sync();
for (int cButton = 0; cButton < 3; cButton++) { for (int cButton = 0; cButton < 3; cButton++) {
bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton); bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton);
} }
npressed = 0; npressed = 0;
raw = digitalRead(2); raw = digitalRead(2);
for (int cOctave = 0; cOctave < 4; cOctave++) { for (int cOctave = 0; cOctave < 4; cOctave++) {
@ -79,15 +83,19 @@ void loop() {
} }
if (raw) return; if (raw) return;
if (npressed < 1) return; if (npressed < 1) return;
if (Serial.read() == MIDICLOCK) {
clock++; if (semA > 0) {
while (kboard[clock] == LOW) { semA--;
clock++; arp++;
if (clock == 49) clock = 0; while (kboard[arp] == LOW) {
arp++;
if (arp == 49) arp = 0;
} }
playNote(clock, HIGH); playNote(arp, HIGH);
delay(gate); }
playNote(clock, LOW); if (semB > 0) {
semB--;
playNote(arp, LOW);
} }
} }
@ -145,4 +153,13 @@ bool evalButton(CapacitiveSensor* b, bool value, byte note) {
return LOW; return LOW;
} }
} }
}
void sync() {
if (Serial.available() && Serial.read() == MIDICLOCK) {
midiclock++;
if (midiclock == 11 && semA == 0) semA++;
else if (midiclock == 5 && semB == 0) semB++;
else if (midiclock == 12) midiclock = 0;
}
} }