#include #include #include #include #include #define BPQN 24 // Ableton sends 24, VCV rack only one, by standard should be 24? #define NOTEOffset 36 #define DRUMSHIFT 6 #define drumOffset 60 #define MINUTE 60000 #define INTERVAL 15 // How many minutes between autosave #define MIDICLOCK 0xf8 #define MAXKEYS 48 #define MAXDPAD 7 #define MAXSTEP 64 #define MAXCHANNEL 6 #define NKEYS 12 #define NOCTAVES 4 #define NBITS 6 #define DEBOUNCE 100 MIDI_CREATE_DEFAULT_INSTANCE(); typedef struct SequencerStep* link; typedef struct SavePoint { int headAddr[MAXCHANNEL]; int tailAddr[MAXCHANNEL]; } save_p; typedef struct SequencerStep { int kboard_s[4]; int dpad_s; unsigned short stepnumber; link next; } step; save_p saveH; // PIN DECLARATIONS int NOTE[NKEYS] = { // Pins used to read each note (C is 0, B is 11) 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 }; int OCTAVE[NOCTAVES] = { // Pins associated to each OCTAVE's contact bar 12, 9, 8, 10 }; int LEDS[NBITS] = { // Pins used for leds 5, 4, 2, 14, 16, 18 }; int OW = 3; // Pin used for overwrite switch int NEXT = 51; // Pin used for next step switch int DEL = 11; // Capacitive button used for DELETE button int PLUS = 10; // Capacitive button used for PLUS button int MINUS = 9; // Capacitive button used for MINUS button int ARP = 7; // Capacitive button used for ARP button // USEFUL ITERABLES int pentathonic[10] = { // Used to quantize drum notes 0, 2, 5, 7, 9, 12, 14, 17, 19, 21 }; int loadingDisplay[6] = { 1, 3, 7, 15, 31, 63}; // PLACEHOLDERS byte velocity = 100; // int bpm = 360; // // SEQUENCER POINTERS AND RELATED ARRAYS link head[6]; link current[6]; link previous; unsigned short nstep[6]; // Keeps track of the sequencer steps bool mute[6]; byte channel; // Current selected channel. Drums are shifted of DRUMSHIFT channels (so channels can only be 6) // SYSTEM VARIABLES int arp[2]; // arp[0] = OCTAVE, arp[1] = KEY (arp[0] for iterations, arp[1] for shifting) int midiclock = 0; // Used to sync with MIDI clock bool arpeggiating = LOW; // Goes HIGH if the user is requesting an arpeggio bool plus_step = LOW; // This is used to remember the addition of a step bool minus_step = LOW; // This is used to remember the deletion of a step bool clear_step = LOW; // This is used to remember the clearing of a step bool chan_up = LOW; // Only for now because I have few buttons :C bool next_step = LOW; // Used to wait for a full switch cycle bool overwrite = LOW; int sem_beat = 0; // Basic semaphore used to sync with MIDI beat int sem_gate = 0; // Basic semaphore used for gate timing unsigned long last_gate; // Gate start time for last sequencer step unsigned long last_next; unsigned long last_save; unsigned long gate_length = 200; // ms of keypress if arpeggiator bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed int kboard[4]; // Last status of keyboard int dpad; // Last status of Capacitive Buttons int cap_read; int difference = 0; // Used in many places, might as well be a global variable Adafruit_MPR121 cap = Adafruit_MPR121(); void setup() { display(loadingDisplay[0]); for (int cOCTAVE = 0; cOCTAVE < NOCTAVES; cOCTAVE++) pinMode(OCTAVE[cOCTAVE], INPUT); // These have to be inputs, otherwise they'll sink current and mess with notes above octaves for (int cNOTE = 0; cNOTE < NKEYS; cNOTE++) pinMode(NOTE[cNOTE], INPUT); for (int cLED = 0; cLED < NBITS; cLED++) pinMode(LEDS[cLED], OUTPUT); pinMode(OW, INPUT_PULLUP); // Used for overwrite switch pinMode(NEXT, INPUT_PULLUP); display(loadingDisplay[1]); MIDI.begin(1); // was using MIDI_CHANNEL_OFF MIDI.setHandleClock(clocksync); MIDI.setHandleControlChange(midisettings); display(loadingDisplay[2]); for (int i = 0; i < 6; i++){ current[i] = NULL; head[i] = NULL; nstep[i] = 0; mute[i] = LOW; } display(loadingDisplay[3]); for (int cOCTAVE = 0; cOCTAVE < NOCTAVES; cOCTAVE++) kboard[cOCTAVE] = 0; dpad = 0; arp[0] = 0; arp[1] = 0; cap_read = 0; channel = (byte) 1; display(loadingDisplay[4]); while (!cap.begin(0x5A)) delay(10); // If MPR121 is not ready, wait for it display(loadingDisplay[5]); loadAll(); last_save = millis(); last_gate = millis(); last_next = millis(); } void loop() { cap_read = cap.touched(); MIDI.read(); if (next_step != (bool) !digitalRead(NEXT)) { // Manual step control next_step = (bool) !digitalRead(NEXT); if (millis() > last_next+DEBOUNCE && next_step == HIGH) { last_next = millis(); sem_beat++; } } if ((cap_read >> 8) & 1) { // Only for now! Needed to change channel for (int i=0; istepnumber); plus_step = plus_step || (bool) ((cap_read >> PLUS) & 1); minus_step = minus_step || (bool) ((cap_read >> MINUS) & 1); clear_step = clear_step || (bool) ((cap_read >> DEL) & 1); arpeggiating = (bool) ((cap_read >> ARP) & 1); overwrite = digitalRead(OW); if (chan_up != (bool) ((cap_read >> 8) & 1)) { // Used to increase channel with a button because I don't have a rotary switch (yet!) chan_up = (bool) ((cap_read >> 8) & 1); if (chan_up == HIGH) { channel++; if (channel > 6) channel = (byte) 1; } } if (sem_beat > 0) { sem_beat--; if (sem_gate > 0) { // If step was shorter than GATE, close all open notes before next step sem_gate--; if (arpeggiating) playNote((arp[0]*NKEYS)+arp[1], LOW, channel); for (int chan = 0; chan < 6; chan++) { if (current[chan] == NULL) continue; for (int i = 0; i < NOCTAVES; i++) for (int j = 0; j < NKEYS; j++) // IF note was played AND user is not playing on this channel AND this note is not kept played if (((current[chan]->kboard_s[i] >> j) & 1) && !(chan+1 != channel && ((kboard[i]>>j) & 1)) && !((current[chan]->next->kboard_s[i] >> j) & 1)) playNote((i*NKEYS)+j, LOW, (byte) chan+1); for (int i = 0; i < MAXDPAD; i++) if (((current[chan]->dpad_s >> i) & 1) && !(chan+1 != channel && ((dpad>>i) & 1))) playDrum(i, LOW, (byte) chan+1); } } if (plus_step && minus_step) { plus_step = LOW; minus_step = LOW; } if (plus_step) { plus_step = LOW; if (nstep[channel-1] < MAXSTEP) insertStep(channel-1); } if (minus_step) { minus_step = LOW; if (nstep[channel-1] > 0) deleteStep(channel-1); } if (clear_step) { clear_step = LOW; if (current[channel-1] != NULL) { for (int i = 0; i < NOCTAVES; i++) current[channel-1]->kboard_s[i] = 0; current[channel-1]->dpad_s = 0; } } nextStep(); // ALL STEPS INCREMENTED display(current[channel-1]->stepnumber); if (arpeggiating) { while (npressed > 0) { arp[1]++; if (arp[1] == NKEYS) { arp[1] = 0; arp[0]++; } if (arp[0] == NOCTAVES) arp[0] = 0; if ((kboard[arp[0]] >> arp[1]) & 1) { playNote((arp[0]*NKEYS)+arp[1], HIGH, channel); if (overwrite && current[channel-1] != NULL) { for (int i=0; ikboard_s[i] = 0; current[channel-1]->kboard_s[arp[0]] = current[channel-1]->kboard_s[arp[0]] | (1 << arp[1]); } break; } } } for (int chan = 0; chan < 6; chan++) { if (mute[chan]) continue; if (current[chan] != NULL) { // PLAY all step notes in all unmuted channels for (int i = 0; i < NOCTAVES; i++) for (int j = 0; j < NKEYS; j++) if (((current[chan]->kboard_s[i] >> j) & 1) && !(chan+1 == channel && npressed > 0)) playNote((i*NKEYS)+j, HIGH, (byte) chan+1); for (int i = 0; i < MAXDPAD; i++) // Drums are played nonetheless because drums already layered won't overrule if ((current[chan]->dpad_s >> i) & 1) playDrum(i, HIGH, (byte) chan+1); } } last_gate = millis(); sem_gate++; } if (sem_gate > 0 && (millis() - last_gate) > gate_length) { sem_gate--; if (arpeggiating) playNote((arp[0]*NKEYS)+arp[1], LOW, channel); for (int chan = 0; chan < 6; chan++) { if (current[chan] == NULL) continue; for (int i = 0; i < NOCTAVES; i++) for (int j = 0; j < NKEYS; j++) if (((current[chan]->kboard_s[i] >> j) & 1) && !(chan+1 != channel && ((kboard[i]>>j) & 1))) playNote((i*NKEYS)+j, LOW, (byte) chan+1); for (int i = 0; i < MAXDPAD; i++) if (((current[chan]->dpad_s >> i) & 1) && !(chan+1 != channel && ((dpad>>i) & 1))) playDrum(i, LOW, (byte) chan+1); } } dpadhit = LOW; difference = dpad ^ cap_read; for (int c = 0; c < MAXDPAD; c++) { if ((difference>>c) & 1) playDrum(c, ((cap_read>>c) & 1), channel); if (dpadhit || ((cap_read>>c) & 1)) dpadhit = HIGH; if (difference != 0) dpad = cap_read; } npressed = 0; for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) { pinMode(OCTAVE[cOCTAVE], OUTPUT); digitalWrite(OCTAVE[cOCTAVE], HIGH); npressed += eval(scan(), cOCTAVE); digitalWrite(OCTAVE[cOCTAVE], LOW); pinMode(OCTAVE[cOCTAVE], INPUT); } if (current[channel-1] != NULL && overwrite) { if (!arpeggiating && npressed > 0) for (int i = 0; i < NOCTAVES; i++) { difference = kboard[i] ^ current[channel-1]->kboard_s[i]; if (difference != 0) current[channel-1]->kboard_s[i] = kboard[i]; } if (dpadhit) current[channel-1]->dpad_s = current[channel-1]->dpad_s | dpad; // Drum hits aren't exclusive! } if (millis() > last_save + (unsigned long) MINUTE*INTERVAL) { saveAll(); last_save = millis(); } } // Hardware specific functions int scan() { // This function reads the 12 NOTE pins and returns a struct int output = 0; for (int c = 0; c < NKEYS; c++) { if (digitalRead(NOTE[c])) output = output | (1<> 1; } } // NOTE Functions int eval(int input, int nOct) { int pressed = 0; int sNOTE = nOct * 12; difference = kboard[nOct] ^ input; for (int c = 0; c < 12; c++) { if (!arpeggiating && ((difference>>c) & 1)) playNote(c + sNOTE, ((input>>c) & 1), channel); if (((input>>c) & 1)) pressed++; } if (difference != 0) kboard[nOct] = input; return pressed; } void playNote(int c, bool status, byte chan) { byte n = c + NOTEOffset; if (status == HIGH) { MIDI.sendNoteOn(n, velocity, chan); } else if (status == LOW) { MIDI.sendNoteOff(n, velocity, chan); } } void playDrum(int c, bool status, byte chan) { // The note is first quantized to a pentathonic and then scaled up to start at C4. byte n = (byte) (pentathonic[c] + drumOffset); if (status == HIGH) { MIDI.sendNoteOn(n, velocity, chan + (byte) DRUMSHIFT); } else if (status == LOW) { MIDI.sendNoteOff(n, velocity, chan + (byte) DRUMSHIFT); } } // MIDI callback functions void clocksync(){ midiclock++; if (midiclock == BPQN) { midiclock = 0; sem_beat++; } } void midisettings(byte channel, byte number, byte value) { if (number == 3) gate_length = (value*10)+10; } // List management functions link newStep() { return (link)malloc(sizeof(struct SequencerStep)); } bool insertStep(byte chan) { // Creates a new enpty step and places it as next step in the channel passed as argument link newS = newStep(); link buffer; if (newS == NULL) { display(63); delay(500); return LOW; } for (int i = 0; i < NOCTAVES; i++) newS->kboard_s[i] = 0; newS->dpad_s = 0; if (head[chan] == NULL) { newS->next = newS; newS->stepnumber = (unsigned short) 0; current[chan] = newS; head[chan] = newS; nstep[chan] = 1; return HIGH; } newS->stepnumber = current[chan]->stepnumber +1; buffer = current[chan]->next; current[chan]->next = newS; newS->next = buffer; int c = 0; buffer = head[chan]; buffer->stepnumber = c; c++; buffer = buffer->next; while(buffer != head[chan]) { buffer->stepnumber = c; c++; buffer = buffer->next; } nstep[chan] = c; return HIGH; } void nextStep() { for (int chan=0; chan < 6; chan++) { if (head[chan] == NULL) continue; current[chan] = current[chan]->next; } } bool deleteStep(byte chan) { if (nstep[chan] < 1) return LOW; if (nstep[chan] == 1) { free(current[chan]); head[chan] = NULL; current[chan] = NULL; return HIGH; } link buffer = current[chan]; while (buffer->next != current[chan]) buffer = buffer->next; // Search for previous step buffer->next = current[chan]->next; // Skip step which is being deleted if (current[chan] == head[chan]) head[chan] = head[chan]->next; // If deleting head, head moves forward free(current[chan]); // Step is actually deleted current[chan] = buffer; // Current step becomes previous step int c = 0; buffer = head[chan]; buffer->stepnumber = c; c++; buffer = buffer->next; while(buffer != head[chan]) { buffer->stepnumber = c; c++; buffer = buffer->next; } nstep[chan] = c; return HIGH; } // SAVING FUNCTIONS void saveAll() { int currAddr = (int) sizeof(save_p); link buffer; for (int c=0; cnext; while (buffer != head[c]) { currAddr = saveStep(buffer, currAddr); buffer = buffer->next; } saveH.tailAddr[c] = currAddr; } saveHead(saveH); } void loadAll() { saveH = loadHead(); int currAddr = saveH.headAddr[0]; link buffer; for (int c=0; cnext = newS; buffer = newS; } buffer->next = head[c]; } } save_p loadHead() { save_p save; byte* pointer = (byte*) (void*) &save; int addr = 0; for (int i=0; i < (int) sizeof(save_p); i++) { *pointer = EEPROM.read(addr); addr++; pointer++; } return save; } void saveHead(save_p save) { byte* pointer = (byte*) (void*) &save; int addr = 0; for (int i=0; i < (int) sizeof(save_p); i++){ EEPROM.update(addr, *pointer); addr++; pointer++; } } int saveStep(link curr_step, int addr) { step buffer = *curr_step; buffer.next = (link) (addr + (int) sizeof(SequencerStep)); byte* pointer = (byte*) (void*) &buffer; for (int i=0; i < (int) sizeof(SequencerStep); i++) { EEPROM.update(addr, *pointer); pointer++; addr++; } return addr; } int loadStep(link step, int addr) { byte* pointer = (byte*) (void*) step; for (int i=0; i<(int) sizeof(SequencerStep); i++) { *pointer = EEPROM.read(addr); pointer++; addr++; } return addr; }