Reworked sequencer. It misses a way to add steps

This commit is contained in:
əlemi 2019-06-27 18:58:37 +02:00
parent 2727b2deef
commit 0923297c09

View file

@ -1,7 +1,9 @@
#define noteOffset 36
#define DRUMNOTE 60
#define NOTEOffset 36
#define drumOffset 60
#define MINUTE 60000
#define MIDICLOCK 0xf8
#define MAXKEYS 48
#define MAXDPAD 3
#include <CapacitiveSensor.h>
#include <MIDI.h>
@ -11,186 +13,216 @@ MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct SequencerStep* link;
typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note
typedef struct OCTAVEStatus { // This struct is for an OCTAVE status. Each bool is for 1 NOTE
bool stat[12];
int nOct;
} octst;
typedef struct SequencerStep {
int note;
int NOTE;
bool kboard_s[MAXKEYS]
bool dpad_s[MAXDPAD]
link next;
} step;
// PIN DECLARATIONS
int note[12] = { // Pins used to read each note (C is 0, B is 11)
int NOTE[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int octave[4] = { // Pins associated to each octave's contact bar
int OCTAVE[4] = { // Pins associated to each OCTAVE's contact bar
12, 9, 8, 10 };
int sendPin[3] = { // Pins used as sender for capacitive touch buttons
int SEND[3] = { // Pins used as sender for capacitive touch buttons
5, 4, 16 };
int receivePin[3] = { // Pins used as receiver for capacitive touch buttons
int RECEIVE[3] = { // Pins used as receiver for capacitive touch buttons
6, 3, 17 };
int OW = 2; // Pin used for overwrite switch
int DEL = -1; // Pin used for delete button
// GLOBAL SETTINGS
bool raw; // Signal is sent when key is detected
bool overwrite; // Step content is overwritten with pressed keys
// PLACEHOLDERS
byte velocity = 100; //
byte channel = 1; //
int bpm = 360; //
unsigned long gate = 50; // ms of keypress if arpeggiator
// SEQUENCER POINTERS
link head, tail, current;
// SYSTEM VARIABLES
int nstep = 0; // Keeps track of the sequencer steps
int arp = 0; // Keeps track of last played note if arpeggiating
int arp = 0; // Keeps track of last played NOTE if arpeggiating
int midiclock = 0; // Used to sync with MIDI clock
int semA = 0; // Basic semaphore implementation with global counter
int semB = 0;
int sem_beat = 0; // Basic semaphore used to sync with MIDI beat
int sem_gate = 0; // Basic semaphore used for gate timing
unsigned long last_gate = 0; // Gate start time for last sequencer step
unsigned long gate_length = 200; // ms of keypress if arpeggiator
bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[49]; // Last status of keyboard
bool bCapStat[3]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[3];
bool kboard[MAXKEYS]; // Last status of keyboard
bool dpad[MAXDPAD]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[MAXDPAD];
void setup() {
for (int cOctave = 0; cOctave < 4; cOctave++) {
pinMode(octave[cOctave], OUTPUT);
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
pinMode(OCTAVE[cOCTAVE], OUTPUT);
}
for (int cNote = 0; cNote < 12; cNote++) {
pinMode(note[cNote], INPUT);
for (int cNOTE = 0; cNOTE < 12; cNOTE++) {
pinMode(NOTE[cNOTE], INPUT);
}
for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized
for (int cButton = 0; cButton < MAXDPAD; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(SEND[cButton], RECEIVE[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
bCapStat[cButton] = LOW; // Button starts LOW
dpad[cButton] = LOW; // Button starts LOW
}
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
for (int cStat = 0; cStat < MAXKEYS; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200);
pinMode(2, INPUT_PULLUP); // Used for RAW switch
pinMode(2, INPUT_PULLUP); // Used for overwrite switch
}
void loop() {
sync();
for (int cButton = 0; cButton < 3; cButton++) {
bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton);
}
npressed = 0;
raw = digitalRead(2);
for (int cOctave = 0; cOctave < 4; cOctave++) {
digitalWrite(octave[cOctave], HIGH);
npressed += eval(scan(cOctave));
digitalWrite(octave[cOctave], LOW);
}
if (raw) return;
if (semA > 0) {
semA--;
if (bCapStat[1]) {
checkInsert();
if (sem_beat > 0) {
sem_beat--;
if (sem_gate > 0) { // If step was shorter than gate, close all open notes before next step
sem_gate--;
for (i=0; i<MAXKEYS; i++) if (current->kboard_s[c]) playNOTE(i, !current->kboard_s[c]);
for (i=0; i<MAXDPAD; i++) if (current->dpad_s[c]) playDrum(i, !current->dpad_s[c]);
}
else if (bCapStat[2] && npressed > 0) {
checkReplace();
}
if (current != NULL && current->note != -1) playNote(current->note, HIGH);
}
if (semB > 0) {
semB--;
if (bCapStat[0] && bCapStat[2]) {
deleteStep();
}
if (current != NULL && current->note != -1) playNote(current->note, LOW);
nextStep();
if (current != NULL) { // Play all step notes and begin counting for gate
for (i=0; i<MAXKEYS; i++) if (current->kboard_s[c]) playNOTE(i, current->kboard_s[c]);
for (i=0; i<MAXDPAD; i++) if (current->dpad_s[c]) playDrum(i, current->dpad_s[c]);
last_gate = millis();
sem_gate++;
}
}
if (sem_gate > 0 && (millis() - last_gate) > gate_length) {
sem_gate--;
for (i=0; i<MAXKEYS; i++) if (current->kboard_s[c]) playNOTE(i, !current->kboard_s[c]);
for (i=0; i<MAXDPAD; i++) if (current->dpad_s[c]) playDrum(i, !current->dpad_s[c]);
}
dpadhit = LOW;
for (int cButton = 0; cButton < MAXDPAD; cButton++) {
dpad[cButton] = evalButton(bCap[cButton], dpad[cButton], cButton);
dpadhit = (dpad[cButton] || dpadhit)
}
npressed = 0;
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
digitalWrite(OCTAVE[cOCTAVE], HIGH);
npressed += eval(scan(cOCTAVE));
digitalWrite(OCTAVE[cOCTAVE], LOW);
}
overwrite = digitalRead(OW);
if (overwrite) {
if (npressed > 0) current->kboard_s = kboard
if (dpadhit) current->dpad_s = dpad
}
}
// Hardware specific functions
octst scan(int nOct) { // This function reads the 12 note pins and returns a struct
int c; // with 1 bool for each note
octst scan(int nOct) { // This function reads the 12 NOTE pins and returns a struct
int c; // with 1 bool for each NOTE
octst output;
output.nOct = nOct;
for (c = 0; c < 12; c++) {
output.stat[c] = digitalRead(note[c]);
output.stat[c] = digitalRead(NOTE[c]);
}
return output;
}
int eval(octst input) {
int pressed = 0;
int snote = input.nOct * 12;
for (int c = 0; c < 12; c++) {
if (input.stat[c] ^ kboard[c + snote]) {
if (raw) playNote(c + snote, input.stat[c]);
kboard[c + snote] = input.stat[c];
}
if (kboard[c + snote] == HIGH) pressed++;
}
return pressed;
}
void playNote(int c, bool status) {
byte n = c + noteOffset;
if (status == HIGH) {
MIDI.sendNoteOn(n, velocity, channel);
}
else if (status == LOW) {
MIDI.sendNoteOff(n, velocity, channel);
}
}
bool evalButton(CapacitiveSensor* b, bool value, byte note) {
bool evalButton(CapacitiveSensor* b, bool value, int note_number) {
long sensor = b->capacitiveSensor(1);
if (sensor > 15) {
if (value) return HIGH;
else {
MIDI.sendNoteOn(note, velocity, (byte)7);
playDrum(note_number, HIGH);
return HIGH;
}
}
else {
if (!value) return LOW;
else {
MIDI.sendNoteOff(note, velocity, (byte)7);
playDrum(note_number, LOW);
return LOW;
}
}
}
// NOTE Functions
int eval(octst input) {
int pressed = 0;
int sNOTE = input.nOct * 12;
for (int c = 0; c < 12; c++) {
if (input.stat[c] ^ kboard[c + sNOTE]) {
playNOTE(c + sNOTE, input.stat[c]);
kboard[c + sNOTE] = input.stat[c];
}
if (kboard[c + sNOTE] == HIGH) pressed++;
}
return pressed;
}
void playNOTE(int c, bool status) {
byte n = c + NOTEOffset;
if (status == HIGH) {
MIDI.sendNOTEOn(n, velocity, channel);
}
else if (status == LOW) {
MIDI.sendNOTEOff(n, velocity, channel);
}
}
void playDrum(int c, bool status) {
byte n = c + drumOffset;
if (status == HIGH) {
MIDI.sendNOTEOn(n, velocity, (byte)7);
}
else if (status == LOW) {
MIDI.sendNOTEOff(n, velocity, (byte)7);
}
}
// Sync functions
void sync() {
if (Serial.available() && Serial.read() == MIDICLOCK) {
midiclock++;
if (midiclock == 11 && semA == 0) semA++;
else if (midiclock == 5 && semB == 0) semB++;
else if (midiclock == 12) midiclock = 0;
if (midiclock == 0 && sem_beat == 0) sem_beat++;
else if (midiclock == 24) midiclock = 0;
}
}
// List management functions
link newStep() {
return (link)malloc(sizeof(struct SequencerStep));
}
bool insertStep(int note) {
bool insertStep() {
link newS = newStep();
if (newS == NULL) {
free(newS);
return LOW;
}
newS->note = note;
newS->kboard_s = kboard;
newS->dpad_s = dpad
if (nstep == 0) {
newS->next = newS;
current = newS;
@ -223,24 +255,4 @@ bool deleteStep() {
}
nstep--;
return HIGH;
}
void checkInsert() {
if (npressed < 1) insertStep(-1);
else {
arp++;
while (!kboard[arp]) {
arp++;
if (arp == 49) arp = 0;
}
insertStep(arp);
}
}
void checkReplace() {
arp++;
while (!kboard[arp]) {
arp++;
if (arp == 49) arp = 0;
}
current->note = arp;
}