Reworked sequencer. It misses a way to add steps

This commit is contained in:
əlemi 2019-06-27 18:58:37 +02:00
parent 2727b2deef
commit 0923297c09

View file

@ -1,7 +1,9 @@
#define noteOffset 36 #define NOTEOffset 36
#define DRUMNOTE 60 #define drumOffset 60
#define MINUTE 60000 #define MINUTE 60000
#define MIDICLOCK 0xf8 #define MIDICLOCK 0xf8
#define MAXKEYS 48
#define MAXDPAD 3
#include <CapacitiveSensor.h> #include <CapacitiveSensor.h>
#include <MIDI.h> #include <MIDI.h>
@ -11,186 +13,216 @@ MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct SequencerStep* link; typedef struct SequencerStep* link;
typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note typedef struct OCTAVEStatus { // This struct is for an OCTAVE status. Each bool is for 1 NOTE
bool stat[12]; bool stat[12];
int nOct; int nOct;
} octst; } octst;
typedef struct SequencerStep { typedef struct SequencerStep {
int note; int NOTE;
bool kboard_s[MAXKEYS]
bool dpad_s[MAXDPAD]
link next; link next;
} step; } step;
// PIN DECLARATIONS // PIN DECLARATIONS
int note[12] = { // Pins used to read each note (C is 0, B is 11) int NOTE[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 }; 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int octave[4] = { // Pins associated to each octave's contact bar int OCTAVE[4] = { // Pins associated to each OCTAVE's contact bar
12, 9, 8, 10 }; 12, 9, 8, 10 };
int sendPin[3] = { // Pins used as sender for capacitive touch buttons int SEND[3] = { // Pins used as sender for capacitive touch buttons
5, 4, 16 }; 5, 4, 16 };
int receivePin[3] = { // Pins used as receiver for capacitive touch buttons int RECEIVE[3] = { // Pins used as receiver for capacitive touch buttons
6, 3, 17 }; 6, 3, 17 };
int OW = 2; // Pin used for overwrite switch
int DEL = -1; // Pin used for delete button
// GLOBAL SETTINGS // GLOBAL SETTINGS
bool raw; // Signal is sent when key is detected bool overwrite; // Step content is overwritten with pressed keys
// PLACEHOLDERS // PLACEHOLDERS
byte velocity = 100; // byte velocity = 100; //
byte channel = 1; // byte channel = 1; //
int bpm = 360; // int bpm = 360; //
unsigned long gate = 50; // ms of keypress if arpeggiator
// SEQUENCER POINTERS // SEQUENCER POINTERS
link head, tail, current; link head, tail, current;
// SYSTEM VARIABLES // SYSTEM VARIABLES
int nstep = 0; // Keeps track of the sequencer steps int nstep = 0; // Keeps track of the sequencer steps
int arp = 0; // Keeps track of last played note if arpeggiating int arp = 0; // Keeps track of last played NOTE if arpeggiating
int midiclock = 0; // Used to sync with MIDI clock int midiclock = 0; // Used to sync with MIDI clock
int semA = 0; // Basic semaphore implementation with global counter int sem_beat = 0; // Basic semaphore used to sync with MIDI beat
int semB = 0; int sem_gate = 0; // Basic semaphore used for gate timing
unsigned long last_gate = 0; // Gate start time for last sequencer step
unsigned long gate_length = 200; // ms of keypress if arpeggiator
bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[49]; // Last status of keyboard bool kboard[MAXKEYS]; // Last status of keyboard
bool bCapStat[3]; // Last status of Capacitive Buttons bool dpad[MAXDPAD]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[3]; CapacitiveSensor* bCap[MAXDPAD];
void setup() { void setup() {
for (int cOctave = 0; cOctave < 4; cOctave++) { for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
pinMode(octave[cOctave], OUTPUT); pinMode(OCTAVE[cOCTAVE], OUTPUT);
} }
for (int cNote = 0; cNote < 12; cNote++) { for (int cNOTE = 0; cNOTE < 12; cNOTE++) {
pinMode(note[cNote], INPUT); pinMode(NOTE[cNOTE], INPUT);
} }
for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration for (int cButton = 0; cButton < MAXDPAD; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized bCap[cButton] = new CapacitiveSensor(SEND[cButton], RECEIVE[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s) bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
bCapStat[cButton] = LOW; // Button starts LOW dpad[cButton] = LOW; // Button starts LOW
} }
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW for (int cStat = 0; cStat < MAXKEYS; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF); MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200); Serial.begin(115200);
pinMode(2, INPUT_PULLUP); // Used for RAW switch pinMode(2, INPUT_PULLUP); // Used for overwrite switch
} }
void loop() { void loop() {
sync(); sync();
if (sem_beat > 0) {
for (int cButton = 0; cButton < 3; cButton++) { sem_beat--;
bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton); if (sem_gate > 0) { // If step was shorter than gate, close all open notes before next step
} sem_gate--;
npressed = 0; for (i=0; i<MAXKEYS; i++) if (current->kboard_s[c]) playNOTE(i, !current->kboard_s[c]);
raw = digitalRead(2); for (i=0; i<MAXDPAD; i++) if (current->dpad_s[c]) playDrum(i, !current->dpad_s[c]);
for (int cOctave = 0; cOctave < 4; cOctave++) {
digitalWrite(octave[cOctave], HIGH);
npressed += eval(scan(cOctave));
digitalWrite(octave[cOctave], LOW);
}
if (raw) return;
if (semA > 0) {
semA--;
if (bCapStat[1]) {
checkInsert();
} }
else if (bCapStat[2] && npressed > 0) {
checkReplace();
}
if (current != NULL && current->note != -1) playNote(current->note, HIGH);
}
if (semB > 0) {
semB--;
if (bCapStat[0] && bCapStat[2]) {
deleteStep();
}
if (current != NULL && current->note != -1) playNote(current->note, LOW);
nextStep(); nextStep();
if (current != NULL) { // Play all step notes and begin counting for gate
for (i=0; i<MAXKEYS; i++) if (current->kboard_s[c]) playNOTE(i, current->kboard_s[c]);
for (i=0; i<MAXDPAD; i++) if (current->dpad_s[c]) playDrum(i, current->dpad_s[c]);
last_gate = millis();
sem_gate++;
}
}
if (sem_gate > 0 && (millis() - last_gate) > gate_length) {
sem_gate--;
for (i=0; i<MAXKEYS; i++) if (current->kboard_s[c]) playNOTE(i, !current->kboard_s[c]);
for (i=0; i<MAXDPAD; i++) if (current->dpad_s[c]) playDrum(i, !current->dpad_s[c]);
}
dpadhit = LOW;
for (int cButton = 0; cButton < MAXDPAD; cButton++) {
dpad[cButton] = evalButton(bCap[cButton], dpad[cButton], cButton);
dpadhit = (dpad[cButton] || dpadhit)
}
npressed = 0;
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
digitalWrite(OCTAVE[cOCTAVE], HIGH);
npressed += eval(scan(cOCTAVE));
digitalWrite(OCTAVE[cOCTAVE], LOW);
}
overwrite = digitalRead(OW);
if (overwrite) {
if (npressed > 0) current->kboard_s = kboard
if (dpadhit) current->dpad_s = dpad
} }
} }
// Hardware specific functions
octst scan(int nOct) { // This function reads the 12 note pins and returns a struct octst scan(int nOct) { // This function reads the 12 NOTE pins and returns a struct
int c; // with 1 bool for each note int c; // with 1 bool for each NOTE
octst output; octst output;
output.nOct = nOct; output.nOct = nOct;
for (c = 0; c < 12; c++) { for (c = 0; c < 12; c++) {
output.stat[c] = digitalRead(note[c]); output.stat[c] = digitalRead(NOTE[c]);
} }
return output; return output;
} }
int eval(octst input) { bool evalButton(CapacitiveSensor* b, bool value, int note_number) {
int pressed = 0;
int snote = input.nOct * 12;
for (int c = 0; c < 12; c++) {
if (input.stat[c] ^ kboard[c + snote]) {
if (raw) playNote(c + snote, input.stat[c]);
kboard[c + snote] = input.stat[c];
}
if (kboard[c + snote] == HIGH) pressed++;
}
return pressed;
}
void playNote(int c, bool status) {
byte n = c + noteOffset;
if (status == HIGH) {
MIDI.sendNoteOn(n, velocity, channel);
}
else if (status == LOW) {
MIDI.sendNoteOff(n, velocity, channel);
}
}
bool evalButton(CapacitiveSensor* b, bool value, byte note) {
long sensor = b->capacitiveSensor(1); long sensor = b->capacitiveSensor(1);
if (sensor > 15) { if (sensor > 15) {
if (value) return HIGH; if (value) return HIGH;
else { else {
MIDI.sendNoteOn(note, velocity, (byte)7); playDrum(note_number, HIGH);
return HIGH; return HIGH;
} }
} }
else { else {
if (!value) return LOW; if (!value) return LOW;
else { else {
MIDI.sendNoteOff(note, velocity, (byte)7); playDrum(note_number, LOW);
return LOW; return LOW;
} }
} }
} }
// NOTE Functions
int eval(octst input) {
int pressed = 0;
int sNOTE = input.nOct * 12;
for (int c = 0; c < 12; c++) {
if (input.stat[c] ^ kboard[c + sNOTE]) {
playNOTE(c + sNOTE, input.stat[c]);
kboard[c + sNOTE] = input.stat[c];
}
if (kboard[c + sNOTE] == HIGH) pressed++;
}
return pressed;
}
void playNOTE(int c, bool status) {
byte n = c + NOTEOffset;
if (status == HIGH) {
MIDI.sendNOTEOn(n, velocity, channel);
}
else if (status == LOW) {
MIDI.sendNOTEOff(n, velocity, channel);
}
}
void playDrum(int c, bool status) {
byte n = c + drumOffset;
if (status == HIGH) {
MIDI.sendNOTEOn(n, velocity, (byte)7);
}
else if (status == LOW) {
MIDI.sendNOTEOff(n, velocity, (byte)7);
}
}
// Sync functions
void sync() { void sync() {
if (Serial.available() && Serial.read() == MIDICLOCK) { if (Serial.available() && Serial.read() == MIDICLOCK) {
midiclock++; midiclock++;
if (midiclock == 11 && semA == 0) semA++; if (midiclock == 0 && sem_beat == 0) sem_beat++;
else if (midiclock == 5 && semB == 0) semB++; else if (midiclock == 24) midiclock = 0;
else if (midiclock == 12) midiclock = 0;
} }
} }
// List management functions
link newStep() { link newStep() {
return (link)malloc(sizeof(struct SequencerStep)); return (link)malloc(sizeof(struct SequencerStep));
} }
bool insertStep(int note) { bool insertStep() {
link newS = newStep(); link newS = newStep();
if (newS == NULL) { if (newS == NULL) {
free(newS); free(newS);
return LOW; return LOW;
} }
newS->note = note; newS->kboard_s = kboard;
newS->dpad_s = dpad
if (nstep == 0) { if (nstep == 0) {
newS->next = newS; newS->next = newS;
current = newS; current = newS;
@ -223,24 +255,4 @@ bool deleteStep() {
} }
nstep--; nstep--;
return HIGH; return HIGH;
}
void checkInsert() {
if (npressed < 1) insertStep(-1);
else {
arp++;
while (!kboard[arp]) {
arp++;
if (arp == 49) arp = 0;
}
insertStep(arp);
}
}
void checkReplace() {
arp++;
while (!kboard[arp]) {
arp++;
if (arp == 49) arp = 0;
}
current->note = arp;
} }