Various improvements and debug leftovers

This commit is contained in:
əlemi 2019-06-29 02:42:38 +02:00
parent 35950fd11b
commit 68d2631f33

View file

@ -2,12 +2,15 @@
#include <MIDI.h> #include <MIDI.h>
#include <HID.h> #include <HID.h>
#define BPQN 24 // Ableton sends 24, VCV rack only one, by standard should be 24?
#define NOTEOffset 36 #define NOTEOffset 36
#define drumOffset 60 #define drumOffset 60
#define MINUTE 60000 #define MINUTE 60000
#define MIDICLOCK 0xf8 #define MIDICLOCK 0xf8
#define MAXKEYS 48 #define MAXKEYS 48
#define MAXDPAD 3 #define MAXDPAD 3
#define MAXSTEP 16
MIDI_CREATE_DEFAULT_INSTANCE(); MIDI_CREATE_DEFAULT_INSTANCE();
@ -21,6 +24,7 @@ typedef struct OCTAVEStatus { // This struct is for an OCTAVE status. Each
typedef struct SequencerStep { typedef struct SequencerStep {
bool kboard_s[MAXKEYS]; bool kboard_s[MAXKEYS];
bool dpad_s[MAXDPAD]; bool dpad_s[MAXDPAD];
unsigned short stepnumber;
link next; link next;
} step; } step;
@ -49,16 +53,18 @@ int bpm = 360; //
// SEQUENCER POINTERS // SEQUENCER POINTERS
link head, tail, current; link head = NULL;
link current = NULL;
// SYSTEM VARIABLES // SYSTEM VARIABLES
int nstep = 0; // Keeps track of the sequencer steps unsigned short nstep = 0; // Keeps track of the sequencer steps
int arp = 0; // Keeps track of last played NOTE if arpeggiating int arp = 0; // Keeps track of last played NOTE if arpeggiating
int midiclock = 0; // Used to sync with MIDI clock int midiclock = 0; // Used to sync with MIDI clock
bool add_step = LOW; // This is used to remember the addition of a step
int sem_beat = 0; // Basic semaphore used to sync with MIDI beat int sem_beat = 0; // Basic semaphore used to sync with MIDI beat
int sem_gate = 0; // Basic semaphore used for gate timing int sem_gate = 0; // Basic semaphore used for gate timing
unsigned long last_gate = 0; // Gate start time for last sequencer step unsigned long last_gate = 0; // Gate start time for last sequencer step
unsigned long gate_length = 200; // ms of keypress if arpeggiator unsigned long gate_length = 500; // ms of keypress if arpeggiator
bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[MAXKEYS]; // Last status of keyboard bool kboard[MAXKEYS]; // Last status of keyboard
@ -73,7 +79,7 @@ void setup() {
for (int cButton = 0; cButton < MAXDPAD; cButton++) { // Capacitive Buttons configuration for (int cButton = 0; cButton < MAXDPAD; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(SEND[cButton], RECEIVE[cButton]); // Initialized bCap[cButton] = new CapacitiveSensor(SEND[cButton], RECEIVE[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s) bCap[cButton]->set_CS_Timeout_Millis(10); // Timeout set to 20ms (instead of 2s)
dpad[cButton] = LOW; // Button starts LOW dpad[cButton] = LOW; // Button starts LOW
} }
@ -84,36 +90,63 @@ void setup() {
pinMode(OW, INPUT_PULLUP); // Used for overwrite switch pinMode(OW, INPUT_PULLUP); // Used for overwrite switch
pinMode(ADD, INPUT_PULLUP); // Used for overwrite switch pinMode(ADD, INPUT_PULLUP); // Used for overwrite switch
for (int i = 0; i < 16; i++) { // Boot up fancyness!
display(i);
delay(200);
}
display(nstep);
} }
void loop() { void loop() {
// Serial.println(midiclock);
// Serial.print("Start | ");
// Serial.print(millis());
// Serial.print('\n');
sync(); sync();
if (current == head) nstep = 0; add_step = (add_step || !digitalRead(ADD));
else nstep++; // Serial.print("SPEPS DONE | ");
display(nstep); // Serial.print(millis());
// Serial.print('\n');
if (sem_beat > 0) { if (sem_beat > 0) {
sem_beat--; sem_beat--;
if (sem_gate > 0) { // If step was shorter than gate, close all open notes before next step if (sem_gate > 0) { // If step was shorter than gate, close all open notes before next step
sem_gate--; sem_gate--;
for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, !current->kboard_s[i]); for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, !current->kboard_s[i]);
for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, !current->dpad_s[i]); for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, !current->dpad_s[i]);
} }
if (digitalRead(ADD)) insertStep(); if (add_step) {
add_step = LOW;
if (nstep < MAXSTEP) insertStep();
}
//if (digitalRead(ADD) && !digitalRead(OW)) deleteStep(); // Placeholder because I miss a button //if (digitalRead(ADD) && !digitalRead(OW)) deleteStep(); // Placeholder because I miss a button
nextStep(); nextStep();
display(current->stepnumber);
if (current != NULL) { // Play all step notes and begin counting for gate if (current != NULL) { // Play all step notes and begin counting for gate
for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, current->kboard_s[i]); for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, current->kboard_s[i]);
for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, current->dpad_s[i]); for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, current->dpad_s[i]);
last_gate = millis(); last_gate = millis();
sem_gate++; sem_gate++;
} }
// Serial.print("BEAT ELABORATED AND PLAYED | ");
// Serial.print(millis());
// Serial.print('\n');
} }
if (sem_gate > 0 && (millis() - last_gate) > gate_length) { if (sem_gate > 0 && (millis() - last_gate) > gate_length) {
sem_gate--; sem_gate--;
for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, !current->kboard_s[i]); for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, !current->kboard_s[i]);
for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, !current->dpad_s[i]); for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, !current->dpad_s[i]);
// Serial.print("GATE FINISHED | ");
// Serial.print(millis());
// Serial.print('\n');
} }
dpadhit = LOW; dpadhit = LOW;
for (int cButton = 0; cButton < MAXDPAD; cButton++) { for (int cButton = 0; cButton < MAXDPAD; cButton++) {
dpad[cButton] = evalButton(bCap[cButton], dpad[cButton], cButton); dpad[cButton] = evalButton(bCap[cButton], dpad[cButton], cButton);
@ -126,10 +159,16 @@ void loop() {
npressed += eval(scan(cOCTAVE)); npressed += eval(scan(cOCTAVE));
digitalWrite(OCTAVE[cOCTAVE], LOW); digitalWrite(OCTAVE[cOCTAVE], LOW);
} }
// Serial.print("READ KEYBOARD | ");
// Serial.print(millis());
// Serial.print('\n');
if (digitalRead(OW)) { if (digitalRead(OW)) {
if (npressed > 0) for (int i = 0; i < MAXKEYS; i++) current->kboard_s[i] = kboard[i]; if (npressed > 0) for (int i = 0; i < MAXKEYS; i++) current->kboard_s[i] = kboard[i];
if (dpadhit) for (int i = 0; i < MAXDPAD; i++) current->dpad_s[i] = dpad[i]; if (dpadhit) for (int i = 0; i < MAXDPAD; i++) current->dpad_s[i] = dpad[i];
// Serial.print("OVERWRITTEN STUFF | ");
// Serial.print(millis());
// Serial.print('\n');
} }
} }
@ -149,13 +188,14 @@ octst scan(int nOct) { // This function reads the 12 NOTE pins and retu
void display(int number){ void display(int number){
for(int i = 0; i < 4; i++) { for(int i = 0; i < 4; i++) {
digitalWrite(LEDS[i], number & 1); digitalWrite(LEDS[i], number & (unsigned short) 1);
number >> 1; number = number >> 1;
} }
} }
bool evalButton(CapacitiveSensor* b, bool value, int note_number) { bool evalButton(CapacitiveSensor* b, bool value, int note_number) {
long sensor = b->capacitiveSensor(1); long sensor = b->capacitiveSensor(1);
// Serial.println(sensor);
if (sensor > 15) { if (sensor > 15) {
if (value) return HIGH; if (value) return HIGH;
@ -212,12 +252,14 @@ void playDrum(int c, bool status) {
// Sync functions // Sync functions
void sync() { void sync() {
if (Serial.available() && Serial.read() == MIDICLOCK) { if (Serial.available()) {
//sem_beat++; if (Serial.read() == MIDICLOCK) {
midiclock++; //sem_beat++;
if (midiclock == 24){ midiclock++;
midiclock = 0; if (midiclock == BPQN){
sem_beat++; midiclock = 0;
sem_beat++;
}
} }
} }
} }
@ -230,28 +272,35 @@ link newStep() {
bool insertStep() { bool insertStep() {
link newS = newStep(); link newS = newStep();
link buffer;
if (newS == NULL) { if (newS == NULL) {
free(newS); free(newS);
return LOW; return LOW;
} }
for (int i = 0; i < MAXKEYS; i++) newS->kboard_s[i] = kboard[i]; for (int i = 0; i < MAXKEYS; i++) newS->kboard_s[i] = LOW;
for (int i = 0; i < MAXDPAD; i++) newS->dpad_s[i] = dpad[i]; for (int i = 0; i < MAXDPAD; i++) newS->dpad_s[i] = LOW;
if (nstep == 0) { if (current == NULL) {
newS->next = newS; newS->next = newS;
newS->stepnumber = (unsigned short) 0;
current = newS; current = newS;
head = newS; head = newS;
nstep = 1;
} }
else { else {
newS->next = current->next; newS->stepnumber = nstep;
current->next = newS; buffer = current;
while (buffer->next != head) buffer = buffer->next;
buffer->next = newS;
newS->next = head;
nstep++;
} }
nstep++;
return HIGH; return HIGH;
} }
void nextStep() { void nextStep() {
if (current == NULL) return;
current = current->next; current = current->next;
} }