mirror of
https://git.alemi.dev/cv-keyboard.git
synced 2024-11-23 17:04:49 +01:00
Cleaned code. Capacitive Buttons have been reimplemented and are now easily scalable
This commit is contained in:
parent
7c7b0cf116
commit
96a4142c0f
1 changed files with 48 additions and 115 deletions
163
cvkeyboard.ino
163
cvkeyboard.ino
|
@ -1,24 +1,7 @@
|
|||
#define C 22
|
||||
#define Db 24
|
||||
#define D 26
|
||||
#define Eb 28
|
||||
#define E 30
|
||||
#define F 32
|
||||
#define Gb 34
|
||||
#define G 36
|
||||
#define Ab 38
|
||||
#define A 40
|
||||
#define Bb 42
|
||||
#define B 44
|
||||
#define testLed 13
|
||||
|
||||
#define Oct1 12
|
||||
#define Oct2 9
|
||||
#define Oct3 8
|
||||
#define Oct4 10
|
||||
|
||||
#define noteOffset 36
|
||||
#define DRUMNOTE 60
|
||||
#define MINUTE 60000
|
||||
#define MIDICLOCK 0xf8
|
||||
|
||||
#include <CapacitiveSensor.h>
|
||||
#include <MIDI.h>
|
||||
|
@ -26,33 +9,39 @@
|
|||
|
||||
MIDI_CREATE_DEFAULT_INSTANCE();
|
||||
|
||||
typedef struct OctaveStatus {
|
||||
typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note
|
||||
bool stat[12];
|
||||
int nOct;
|
||||
} octst;
|
||||
|
||||
int note[12] = {
|
||||
C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B }; // Note Pins above
|
||||
int octave[4] = {
|
||||
Oct1, Oct2, Oct3, Oct4 }; // Octave Pins above
|
||||
|
||||
int clock = 0; // Used if arp to cycle through notes
|
||||
octst buff;
|
||||
bool kboard[49];
|
||||
bool raw; // Global Settings. RAW = signal is sent when key is detected
|
||||
byte velocity = 100;
|
||||
byte channel = 1;
|
||||
byte midi_clock = 0xf8;
|
||||
byte dataIn;
|
||||
int bpm = 360;
|
||||
unsigned long nextBeat = 0;
|
||||
unsigned long gate = 50; //ms of keypress if arpeggiator
|
||||
int npressed;
|
||||
bool bu1, bu2, bu3;
|
||||
// PIN DECLARATIONS
|
||||
int note[12] = { // Pins used to read each note (C is 0, B is 11)
|
||||
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
|
||||
int octave[4] = { // Pins associated to each octave's contact bar
|
||||
12, 9, 8, 10 };
|
||||
int sendPin[3] = { // Pins used as sender for capacitive touch buttons
|
||||
5, 4, 16 };
|
||||
int receivePin[3] = { // Pins used as receiver for capacitive touch buttons
|
||||
6, 3, 17 };
|
||||
|
||||
// GLOBAL SETTINGS
|
||||
bool raw; // Signal is sent when key is detected
|
||||
|
||||
// PLACEHOLDERS
|
||||
byte velocity = 100; //
|
||||
byte channel = 1; //
|
||||
int bpm = 360; //
|
||||
unsigned long gate = 50; // ms of keypress if arpeggiator
|
||||
unsigned long nextBeat = 0; // Used to keep track of beats. Useless if receiving MIDI clock.
|
||||
|
||||
// SYSTEM VARIABLES
|
||||
int clock = 0; // Used if arp to cycle through notes
|
||||
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
|
||||
bool kboard[49]; // Last status of keyboard
|
||||
bool bCapStat[3]; // Last status of Capacitive Buttons
|
||||
CapacitiveSensor* bCap[3];
|
||||
|
||||
CapacitiveSensor b1 = CapacitiveSensor(5, 6);
|
||||
CapacitiveSensor b2 = CapacitiveSensor(4, 3);
|
||||
CapacitiveSensor b3 = CapacitiveSensor(16, 17);
|
||||
|
||||
void setup() {
|
||||
for (int cOctave = 0; cOctave < 4; cOctave++) {
|
||||
|
@ -61,23 +50,25 @@ void setup() {
|
|||
for (int cNote = 0; cNote < 12; cNote++) {
|
||||
pinMode(note[cNote], INPUT);
|
||||
}
|
||||
for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration
|
||||
bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized
|
||||
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
|
||||
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
|
||||
bCapStat[cButton] = LOW; // Button starts LOW
|
||||
}
|
||||
|
||||
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
|
||||
|
||||
MIDI.begin(MIDI_CHANNEL_OFF);
|
||||
Serial.begin(115200);
|
||||
nextBeat = millis() + (MINUTE / bpm);
|
||||
pinMode(2, INPUT_PULLUP);
|
||||
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW;
|
||||
nextBeat = 0;
|
||||
|
||||
b1.set_CS_AutocaL_Millis(0xFFFFFFFF);
|
||||
b2.set_CS_AutocaL_Millis(0xFFFFFFFF);
|
||||
b3.set_CS_AutocaL_Millis(0xFFFFFFFF);
|
||||
bu1 = LOW;
|
||||
bu2 = LOW;
|
||||
bu3 = LOW;
|
||||
pinMode(2, INPUT_PULLUP); // Used for RAW switch
|
||||
}
|
||||
|
||||
void loop() {
|
||||
scanButtons();
|
||||
for (int cButton = 0; cButton < 3; cButton++) {
|
||||
bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton);
|
||||
}
|
||||
|
||||
npressed = 0;
|
||||
raw = digitalRead(2);
|
||||
|
@ -88,8 +79,7 @@ void loop() {
|
|||
}
|
||||
if (raw) return;
|
||||
if (npressed < 1) return;
|
||||
dataIn = Serial.read();
|
||||
if (dataIn == midi_clock) {
|
||||
if (Serial.read() == MIDICLOCK) {
|
||||
clock++;
|
||||
while (kboard[clock] == LOW) {
|
||||
clock++;
|
||||
|
@ -103,7 +93,7 @@ void loop() {
|
|||
|
||||
|
||||
octst scan(int nOct) { // This function reads the 12 note pins and returns a struct
|
||||
int c; // with 1 bool for each note
|
||||
int c; // with 1 bool for each note
|
||||
octst output;
|
||||
|
||||
output.nOct = nOct;
|
||||
|
@ -128,13 +118,6 @@ int eval(octst input) {
|
|||
return pressed;
|
||||
}
|
||||
|
||||
void serialDebug(octst input) { // Prints on the Serial Monitor the 12 bits just read
|
||||
for (int c = 0; c < 12; c++) {
|
||||
Serial.print(input.stat[c]);
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
void playNote(int c, bool status) {
|
||||
byte n = c + noteOffset;
|
||||
if (status == HIGH) {
|
||||
|
@ -145,70 +128,20 @@ void playNote(int c, bool status) {
|
|||
}
|
||||
}
|
||||
|
||||
void scanButtons() {
|
||||
long sensor1 = b1.capacitiveSensor(1);
|
||||
long sensor2 = b2.capacitiveSensor(1);
|
||||
long sensor3 = b3.capacitiveSensor(1);
|
||||
|
||||
if (sensor1 > 10) {
|
||||
if (!bu1) {
|
||||
MIDI.sendNoteOn(95, velocity, 7);
|
||||
bu1 = HIGH;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (bu1) {
|
||||
MIDI.sendNoteOff(95, velocity, 7);
|
||||
bu1 = LOW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (sensor2 > 10) {
|
||||
if (!bu2) {
|
||||
MIDI.sendNoteOn(97, velocity, 7);
|
||||
bu2 = HIGH;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (bu2) {
|
||||
MIDI.sendNoteOff(97, velocity, 7);
|
||||
bu2 = LOW;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (sensor3 > 10) {
|
||||
if (!bu3) {
|
||||
MIDI.sendNoteOn(99, velocity, 7);
|
||||
bu3 = HIGH;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (bu3) {
|
||||
MIDI.sendNoteOff(99, velocity, 7);
|
||||
bu3 = LOW;
|
||||
}
|
||||
}
|
||||
/*bu1 = evalButton(b1, bu1, 95);
|
||||
bu2 = evalButton(b2, bu2, 97);
|
||||
bu3 = evalButton(b3, bu3, 99);*/
|
||||
}
|
||||
|
||||
bool evalButton(CapacitiveSensor b, bool value, int note) {
|
||||
long sensor = b.capacitiveSensor(1);
|
||||
bool evalButton(CapacitiveSensor* b, bool value, byte note) {
|
||||
long sensor = b->capacitiveSensor(1);
|
||||
|
||||
if (sensor > 15) {
|
||||
if (value) return HIGH;
|
||||
else {
|
||||
MIDI.sendNoteOn(note, velocity, 7);
|
||||
MIDI.sendNoteOn(note, velocity, (byte)7);
|
||||
return HIGH;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (!value) return LOW;
|
||||
else {
|
||||
MIDI.sendNoteOff(note, velocity, 7);
|
||||
MIDI.sendNoteOff(note, velocity, (byte)7);
|
||||
return LOW;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue