Cleaned code. Capacitive Buttons have been reimplemented and are now easily scalable

This commit is contained in:
əlemi 2019-03-09 15:23:18 +01:00
parent 7c7b0cf116
commit 96a4142c0f

View file

@ -1,24 +1,7 @@
#define C 22
#define Db 24
#define D 26
#define Eb 28
#define E 30
#define F 32
#define Gb 34
#define G 36
#define Ab 38
#define A 40
#define Bb 42
#define B 44
#define testLed 13
#define Oct1 12
#define Oct2 9
#define Oct3 8
#define Oct4 10
#define noteOffset 36
#define DRUMNOTE 60
#define MINUTE 60000
#define MIDICLOCK 0xf8
#include <CapacitiveSensor.h>
#include <MIDI.h>
@ -26,33 +9,39 @@
MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct OctaveStatus {
typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note
bool stat[12];
int nOct;
} octst;
int note[12] = {
C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B }; // Note Pins above
int octave[4] = {
Oct1, Oct2, Oct3, Oct4 }; // Octave Pins above
int clock = 0; // Used if arp to cycle through notes
octst buff;
bool kboard[49];
bool raw; // Global Settings. RAW = signal is sent when key is detected
byte velocity = 100;
byte channel = 1;
byte midi_clock = 0xf8;
byte dataIn;
int bpm = 360;
unsigned long nextBeat = 0;
unsigned long gate = 50; //ms of keypress if arpeggiator
int npressed;
bool bu1, bu2, bu3;
// PIN DECLARATIONS
int note[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int octave[4] = { // Pins associated to each octave's contact bar
12, 9, 8, 10 };
int sendPin[3] = { // Pins used as sender for capacitive touch buttons
5, 4, 16 };
int receivePin[3] = { // Pins used as receiver for capacitive touch buttons
6, 3, 17 };
// GLOBAL SETTINGS
bool raw; // Signal is sent when key is detected
// PLACEHOLDERS
byte velocity = 100; //
byte channel = 1; //
int bpm = 360; //
unsigned long gate = 50; // ms of keypress if arpeggiator
unsigned long nextBeat = 0; // Used to keep track of beats. Useless if receiving MIDI clock.
// SYSTEM VARIABLES
int clock = 0; // Used if arp to cycle through notes
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[49]; // Last status of keyboard
bool bCapStat[3]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[3];
CapacitiveSensor b1 = CapacitiveSensor(5, 6);
CapacitiveSensor b2 = CapacitiveSensor(4, 3);
CapacitiveSensor b3 = CapacitiveSensor(16, 17);
void setup() {
for (int cOctave = 0; cOctave < 4; cOctave++) {
@ -61,23 +50,25 @@ void setup() {
for (int cNote = 0; cNote < 12; cNote++) {
pinMode(note[cNote], INPUT);
}
for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
bCapStat[cButton] = LOW; // Button starts LOW
}
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200);
nextBeat = millis() + (MINUTE / bpm);
pinMode(2, INPUT_PULLUP);
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW;
nextBeat = 0;
b1.set_CS_AutocaL_Millis(0xFFFFFFFF);
b2.set_CS_AutocaL_Millis(0xFFFFFFFF);
b3.set_CS_AutocaL_Millis(0xFFFFFFFF);
bu1 = LOW;
bu2 = LOW;
bu3 = LOW;
pinMode(2, INPUT_PULLUP); // Used for RAW switch
}
void loop() {
scanButtons();
for (int cButton = 0; cButton < 3; cButton++) {
bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton);
}
npressed = 0;
raw = digitalRead(2);
@ -88,8 +79,7 @@ void loop() {
}
if (raw) return;
if (npressed < 1) return;
dataIn = Serial.read();
if (dataIn == midi_clock) {
if (Serial.read() == MIDICLOCK) {
clock++;
while (kboard[clock] == LOW) {
clock++;
@ -103,7 +93,7 @@ void loop() {
octst scan(int nOct) { // This function reads the 12 note pins and returns a struct
int c; // with 1 bool for each note
int c; // with 1 bool for each note
octst output;
output.nOct = nOct;
@ -128,13 +118,6 @@ int eval(octst input) {
return pressed;
}
void serialDebug(octst input) { // Prints on the Serial Monitor the 12 bits just read
for (int c = 0; c < 12; c++) {
Serial.print(input.stat[c]);
}
Serial.println("");
}
void playNote(int c, bool status) {
byte n = c + noteOffset;
if (status == HIGH) {
@ -145,70 +128,20 @@ void playNote(int c, bool status) {
}
}
void scanButtons() {
long sensor1 = b1.capacitiveSensor(1);
long sensor2 = b2.capacitiveSensor(1);
long sensor3 = b3.capacitiveSensor(1);
if (sensor1 > 10) {
if (!bu1) {
MIDI.sendNoteOn(95, velocity, 7);
bu1 = HIGH;
}
}
else {
if (bu1) {
MIDI.sendNoteOff(95, velocity, 7);
bu1 = LOW;
}
}
if (sensor2 > 10) {
if (!bu2) {
MIDI.sendNoteOn(97, velocity, 7);
bu2 = HIGH;
}
}
else {
if (bu2) {
MIDI.sendNoteOff(97, velocity, 7);
bu2 = LOW;
}
}
if (sensor3 > 10) {
if (!bu3) {
MIDI.sendNoteOn(99, velocity, 7);
bu3 = HIGH;
}
}
else {
if (bu3) {
MIDI.sendNoteOff(99, velocity, 7);
bu3 = LOW;
}
}
/*bu1 = evalButton(b1, bu1, 95);
bu2 = evalButton(b2, bu2, 97);
bu3 = evalButton(b3, bu3, 99);*/
}
bool evalButton(CapacitiveSensor b, bool value, int note) {
long sensor = b.capacitiveSensor(1);
bool evalButton(CapacitiveSensor* b, bool value, byte note) {
long sensor = b->capacitiveSensor(1);
if (sensor > 15) {
if (value) return HIGH;
else {
MIDI.sendNoteOn(note, velocity, 7);
MIDI.sendNoteOn(note, velocity, (byte)7);
return HIGH;
}
}
else {
if (!value) return LOW;
else {
MIDI.sendNoteOff(note, velocity, 7);
MIDI.sendNoteOff(note, velocity, (byte)7);
return LOW;
}
}