Cleaned code. Capacitive Buttons have been reimplemented and are now easily scalable

This commit is contained in:
əlemi 2019-03-09 15:23:18 +01:00
parent 7c7b0cf116
commit 96a4142c0f

View file

@ -1,24 +1,7 @@
#define C 22
#define Db 24
#define D 26
#define Eb 28
#define E 30
#define F 32
#define Gb 34
#define G 36
#define Ab 38
#define A 40
#define Bb 42
#define B 44
#define testLed 13
#define Oct1 12
#define Oct2 9
#define Oct3 8
#define Oct4 10
#define noteOffset 36 #define noteOffset 36
#define DRUMNOTE 60
#define MINUTE 60000 #define MINUTE 60000
#define MIDICLOCK 0xf8
#include <CapacitiveSensor.h> #include <CapacitiveSensor.h>
#include <MIDI.h> #include <MIDI.h>
@ -26,33 +9,39 @@
MIDI_CREATE_DEFAULT_INSTANCE(); MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct OctaveStatus { typedef struct OctaveStatus { // This struct is for an octave status. Each bool is for 1 note
bool stat[12]; bool stat[12];
int nOct; int nOct;
} octst; } octst;
int note[12] = {
C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B }; // Note Pins above
int octave[4] = {
Oct1, Oct2, Oct3, Oct4 }; // Octave Pins above
int clock = 0; // Used if arp to cycle through notes // PIN DECLARATIONS
octst buff; int note[12] = { // Pins used to read each note (C is 0, B is 11)
bool kboard[49]; 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
bool raw; // Global Settings. RAW = signal is sent when key is detected int octave[4] = { // Pins associated to each octave's contact bar
byte velocity = 100; 12, 9, 8, 10 };
byte channel = 1; int sendPin[3] = { // Pins used as sender for capacitive touch buttons
byte midi_clock = 0xf8; 5, 4, 16 };
byte dataIn; int receivePin[3] = { // Pins used as receiver for capacitive touch buttons
int bpm = 360; 6, 3, 17 };
unsigned long nextBeat = 0;
// GLOBAL SETTINGS
bool raw; // Signal is sent when key is detected
// PLACEHOLDERS
byte velocity = 100; //
byte channel = 1; //
int bpm = 360; //
unsigned long gate = 50; // ms of keypress if arpeggiator unsigned long gate = 50; // ms of keypress if arpeggiator
int npressed; unsigned long nextBeat = 0; // Used to keep track of beats. Useless if receiving MIDI clock.
bool bu1, bu2, bu3;
// SYSTEM VARIABLES
int clock = 0; // Used if arp to cycle through notes
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[49]; // Last status of keyboard
bool bCapStat[3]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[3];
CapacitiveSensor b1 = CapacitiveSensor(5, 6);
CapacitiveSensor b2 = CapacitiveSensor(4, 3);
CapacitiveSensor b3 = CapacitiveSensor(16, 17);
void setup() { void setup() {
for (int cOctave = 0; cOctave < 4; cOctave++) { for (int cOctave = 0; cOctave < 4; cOctave++) {
@ -61,23 +50,25 @@ void setup() {
for (int cNote = 0; cNote < 12; cNote++) { for (int cNote = 0; cNote < 12; cNote++) {
pinMode(note[cNote], INPUT); pinMode(note[cNote], INPUT);
} }
for (int cButton = 0; cButton < 3; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(sendPin[cButton], receivePin[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
bCapStat[cButton] = LOW; // Button starts LOW
}
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF); MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200); Serial.begin(115200);
nextBeat = millis() + (MINUTE / bpm);
pinMode(2, INPUT_PULLUP);
for (int cStat = 0; cStat < 49; cStat++) kboard[cStat] = LOW;
nextBeat = 0;
b1.set_CS_AutocaL_Millis(0xFFFFFFFF); pinMode(2, INPUT_PULLUP); // Used for RAW switch
b2.set_CS_AutocaL_Millis(0xFFFFFFFF);
b3.set_CS_AutocaL_Millis(0xFFFFFFFF);
bu1 = LOW;
bu2 = LOW;
bu3 = LOW;
} }
void loop() { void loop() {
scanButtons(); for (int cButton = 0; cButton < 3; cButton++) {
bCapStat[cButton] = evalButton(bCap[cButton], bCapStat[cButton], DRUMNOTE + cButton);
}
npressed = 0; npressed = 0;
raw = digitalRead(2); raw = digitalRead(2);
@ -88,8 +79,7 @@ void loop() {
} }
if (raw) return; if (raw) return;
if (npressed < 1) return; if (npressed < 1) return;
dataIn = Serial.read(); if (Serial.read() == MIDICLOCK) {
if (dataIn == midi_clock) {
clock++; clock++;
while (kboard[clock] == LOW) { while (kboard[clock] == LOW) {
clock++; clock++;
@ -128,13 +118,6 @@ int eval(octst input) {
return pressed; return pressed;
} }
void serialDebug(octst input) { // Prints on the Serial Monitor the 12 bits just read
for (int c = 0; c < 12; c++) {
Serial.print(input.stat[c]);
}
Serial.println("");
}
void playNote(int c, bool status) { void playNote(int c, bool status) {
byte n = c + noteOffset; byte n = c + noteOffset;
if (status == HIGH) { if (status == HIGH) {
@ -145,70 +128,20 @@ void playNote(int c, bool status) {
} }
} }
void scanButtons() { bool evalButton(CapacitiveSensor* b, bool value, byte note) {
long sensor1 = b1.capacitiveSensor(1); long sensor = b->capacitiveSensor(1);
long sensor2 = b2.capacitiveSensor(1);
long sensor3 = b3.capacitiveSensor(1);
if (sensor1 > 10) {
if (!bu1) {
MIDI.sendNoteOn(95, velocity, 7);
bu1 = HIGH;
}
}
else {
if (bu1) {
MIDI.sendNoteOff(95, velocity, 7);
bu1 = LOW;
}
}
if (sensor2 > 10) {
if (!bu2) {
MIDI.sendNoteOn(97, velocity, 7);
bu2 = HIGH;
}
}
else {
if (bu2) {
MIDI.sendNoteOff(97, velocity, 7);
bu2 = LOW;
}
}
if (sensor3 > 10) {
if (!bu3) {
MIDI.sendNoteOn(99, velocity, 7);
bu3 = HIGH;
}
}
else {
if (bu3) {
MIDI.sendNoteOff(99, velocity, 7);
bu3 = LOW;
}
}
/*bu1 = evalButton(b1, bu1, 95);
bu2 = evalButton(b2, bu2, 97);
bu3 = evalButton(b3, bu3, 99);*/
}
bool evalButton(CapacitiveSensor b, bool value, int note) {
long sensor = b.capacitiveSensor(1);
if (sensor > 15) { if (sensor > 15) {
if (value) return HIGH; if (value) return HIGH;
else { else {
MIDI.sendNoteOn(note, velocity, 7); MIDI.sendNoteOn(note, velocity, (byte)7);
return HIGH; return HIGH;
} }
} }
else { else {
if (!value) return LOW; if (!value) return LOW;
else { else {
MIDI.sendNoteOff(note, velocity, 7); MIDI.sendNoteOff(note, velocity, (byte)7);
return LOW; return LOW;
} }
} }