Switched to adafruit MPR121. Only the necessary channel is muted when user plays. Various bugfixes. Removed debug code. Added idle animation.

This commit is contained in:
əlemi 2019-07-06 03:39:35 +02:00
parent 3a1368b8be
commit c42b016f58

View file

@ -1,6 +1,7 @@
#include <CapacitiveSensor.h>
#include <MIDI.h>
#include <HID.h>
#include <Wire.h>
#include <Adafruit_MPR121.h>
#define BPQN 24 // Ableton sends 24, VCV rack only one, by standard should be 24?
@ -36,18 +37,17 @@ int NOTE[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int OCTAVE[4] = { // Pins associated to each OCTAVE's contact bar
12, 9, 8, 10 };
int SEND[3] = { // Pins used as sender for capacitive touch buttons
5, 4, 16 };
int RECEIVE[3] = { // Pins used as receiver for capacitive touch buttons
6, 1, 17 };
int LEDS[NBITS] = { // Pins used for leds
15, 3, 21, 20, 19, 18 };
14, 15, 16, 17, 18, 19 };
int OW = 2; // Pin used for overwrite switch
int DEL = -1; // Pin used for delete button
int ADD = 14; // Pin used for add button
int DEL = 11; // Capacitive button used for DELETE button
int PLUS = 10; // Capacitive button used for PLUS button
int MINUS = 9; // Capacitive button used for MINUS button
// GLOBAL SETTINGS
//bool overwrite; // Step content is overwritten with pressed keys, could not be needed
int pentathonic[10] = { // Used to quantize drum notes
0, 2, 5, 7, 9, 12, 14, 17, 19, 21 };
// PLACEHOLDERS
byte velocity = 100; //
@ -76,28 +76,24 @@ bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is tr
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[MAXKEYS]; // Last status of keyboard
bool dpad[MAXDPAD]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[MAXDPAD];
int cap_read = 0;
Adafruit_MPR121 cap = Adafruit_MPR121();
void setup() {
display(1);
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) pinMode(OCTAVE[cOCTAVE], OUTPUT);
for (int cNOTE = 0; cNOTE < 12; cNOTE++) pinMode(NOTE[cNOTE], INPUT);
for (int cLED = 0; cLED < NBITS; cLED++) pinMode(LEDS[cLED], OUTPUT);
for (int cButton = 0; cButton < MAXDPAD; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(SEND[cButton], RECEIVE[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(1); // Timeout set to 20ms (instead of 2s)
dpad[cButton] = LOW; // Button starts LOW
}
display(3);
while (!cap.begin(0x5A)) delay(10); // If MPR121 is not ready, wait for it
display(7);
for (int cStat = 0; cStat < MAXKEYS; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
display(15);
MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200); // Uncomment this if you use Hairless and set baud rate
pinMode(OW, INPUT_PULLUP); // Used for overwrite switch
pinMode(ADD, INPUT_PULLUP); // Used for overwrite switch
display(31);
for (int i = 0; i < 6; i++){
current[i] = NULL;
head[i] = NULL;
@ -105,25 +101,15 @@ void setup() {
mute[i] = LOW;
}
channel = (byte) 1;
for (int i = 0; i < 64; i++) { // Boot up fancyness! NBITS*NBITS
display(i);
delay(50);
}
// ONLY FOR DEBUG
for (int i=0; i<64; i++) insertStep((byte) 0);
for (int i=0; i<32; i++) insertStep((byte) 1);
for (int i=0; i<16; i++) insertStep((byte) 2);
display(0);
display(63);
}
void loop() {
sync();
// add_step = (add_step || !digitalRead(ADD));
// del_step = (del_step || !digitalRead(DEL));
chan_up = (chan_up || !digitalRead(ADD));
if (current[channel-1] == NULL) display(analogRead(channel));
else display(current[channel-1]->stepnumber);
cap_read = cap.touched();
if (sem_beat > 0) {
sem_beat--;
@ -165,11 +151,11 @@ void loop() {
display(current[channel-1]->stepnumber);
for (int chan = 0; chan < 6; chan++) {
if (mute[chan]) continue;
if (npressed > 0 && chan == (int) channel-1) continue; // If the user is playing in this channel no note should be played
if (current[chan] != NULL) { // PLAY all step notes in all unmuted channels
if (npressed < 1) // If the user is currently playing this step no note will play to avoid overruling (if monophonic)
for (int i = 0; i < MAXKEYS; i++)
if (current[chan]->kboard_s[i])
playNote(i, current[chan]->kboard_s[i], (byte) chan+1);
for (int i = 0; i < MAXKEYS; i++)
if (current[chan]->kboard_s[i] && !kboard[i])
playNote(i, current[chan]->kboard_s[i], (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++) // Drums are played nonetheless because drums already layered won't overrule
if (current[chan]->dpad_s[i] && !dpad[i])
playDrum(i, current[chan]->dpad_s[i], (byte) chan+1);
@ -194,7 +180,10 @@ void loop() {
dpadhit = LOW;
for (int cButton = 0; cButton < MAXDPAD; cButton++) {
dpad[cButton] = evalButton(bCap[cButton], dpad[cButton], cButton);
if (( 1 & (cap_read >> cButton)) ^ dpad[cButton]) {
dpad[cButton] = (bool) 1 & (cap_read >> cButton);
playDrum(cButton, dpad[cButton], channel);
}
dpadhit = (dpad[cButton] || dpadhit);
}
@ -235,26 +224,6 @@ void display(int number){
}
}
bool evalButton(CapacitiveSensor* b, bool value, int note_number) {
long sensor = b->capacitiveSensor(1);
// Serial.println(sensor);
if (sensor > 15) {
if (value) return HIGH;
else {
playDrum(note_number, HIGH, channel);
return HIGH;
}
}
else {
if (!value) return LOW;
else {
playDrum(note_number, LOW, channel);
return LOW;
}
}
}
// NOTE Functions
int eval(octst input) {
@ -282,7 +251,8 @@ void playNote(int c, bool status, byte chan) {
}
void playDrum(int c, bool status, byte chan) {
byte n = c + drumOffset;
// The note is first quantized to a pentathonic and then scaled up to start at C4.
byte n = (byte) (pentathonic[c] + drumOffset);
if (status == HIGH) {
MIDI.sendNoteOn(n, velocity, chan + (byte) DRUMSHIFT);
}
@ -313,6 +283,7 @@ link newStep() {
}
bool insertStep(byte chan) {
// Creates a new enpty step and places it as next step in the channel passed as argument
link newS = newStep();
link buffer;
@ -329,12 +300,15 @@ bool insertStep(byte chan) {
nstep[chan] = 1;
}
else {
newS->stepnumber = nstep[chan];
buffer = current[chan];
while (buffer->next != head[chan]) buffer = buffer->next;
buffer->next = newS;
newS->next = head[chan];
newS->stepnumber = current[chan]->stepnumber +1;
buffer = current[chan]->next;
current[chan]->next = newS;
newS->next = buffer;
nstep[chan]++;
while (buffer != head[chan]) {
buffer->stepnumber++;
buffer = buffer->next;
}
}
return HIGH;
}