cv-keyboard/cvkeyboard.ino

541 lines
No EOL
15 KiB
C++

#include <MIDI.h>
#include <HID.h>
#include <Wire.h>
#include <EEPROM.h>
#include <Adafruit_MPR121.h>
#define BPQN 24 // Ableton sends 24, VCV rack only one, by standard should be 24?
#define NOTEOffset 36
#define DRUMSHIFT 6
#define drumOffset 60
#define MINUTE 60000
#define INTERVAL 15 // How many minutes between autosave
#define MIDICLOCK 0xf8
#define MAXKEYS 48
#define MAXDPAD 7
#define MAXSTEP 64
#define MAXCHANNEL 6
#define NKEYS 12
#define NOCTAVES 4
#define NBITS 6
#define DEBOUNCE 100
MIDI_CREATE_DEFAULT_INSTANCE();
typedef struct SequencerStep* link;
typedef struct SavePoint {
int headAddr[MAXCHANNEL];
int tailAddr[MAXCHANNEL];
} save_p;
typedef struct SequencerStep {
int kboard_s[4];
int dpad_s;
unsigned short stepnumber;
link next;
} step;
save_p saveH;
// PIN DECLARATIONS
int NOTE[NKEYS] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int OCTAVE[NOCTAVES] = { // Pins associated to each OCTAVE's contact bar
12, 9, 8, 10 };
int LEDS[NBITS] = { // Pins used for leds
5, 4, 2, 14, 16, 18 };
int OW = 3; // Pin used for overwrite switch
int NEXT = 51; // Pin used for next step switch
int DEL = 11; // Capacitive button used for DELETE button
int PLUS = 10; // Capacitive button used for PLUS button
int MINUS = 9; // Capacitive button used for MINUS button
int ARP = 7; // Capacitive button used for ARP button
// USEFUL ITERABLES
int pentathonic[10] = { // Used to quantize drum notes
0, 2, 5, 7, 9, 12, 14, 17, 19, 21 };
int loadingDisplay[6] = {
1, 3, 7, 15, 31, 63};
// PLACEHOLDERS
byte velocity = 100; //
int bpm = 360; //
// SEQUENCER POINTERS AND RELATED ARRAYS
link head[6];
link current[6];
link previous;
unsigned short nstep[6]; // Keeps track of the sequencer steps
bool mute[6];
byte channel; // Current selected channel. Drums are shifted of DRUMSHIFT channels (so channels can only be 6)
// SYSTEM VARIABLES
int arp[2]; // arp[0] = OCTAVE, arp[1] = KEY (arp[0] for iterations, arp[1] for shifting)
int midiclock = 0; // Used to sync with MIDI clock
bool arpeggiating = LOW; // Goes HIGH if the user is requesting an arpeggio
bool plus_step = LOW; // This is used to remember the addition of a step
bool minus_step = LOW; // This is used to remember the deletion of a step
bool clear_step = LOW; // This is used to remember the clearing of a step
bool chan_up = LOW; // Only for now because I have few buttons :C
bool next_step = LOW; // Used to wait for a full switch cycle
bool overwrite = LOW;
int sem_beat = 0; // Basic semaphore used to sync with MIDI beat
int sem_gate = 0; // Basic semaphore used for gate timing
unsigned long last_gate; // Gate start time for last sequencer step
unsigned long last_next;
unsigned long last_save;
unsigned long gate_length = 200; // ms of keypress if arpeggiator
bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
int kboard[4]; // Last status of keyboard
int dpad; // Last status of Capacitive Buttons
int cap_read;
int difference = 0; // Used in many places, might as well be a global variable
Adafruit_MPR121 cap = Adafruit_MPR121();
void setup() {
display(loadingDisplay[0]);
for (int cOCTAVE = 0; cOCTAVE < NOCTAVES; cOCTAVE++) pinMode(OCTAVE[cOCTAVE], INPUT); // These have to be inputs, otherwise they'll sink current and mess with notes above octaves
for (int cNOTE = 0; cNOTE < NKEYS; cNOTE++) pinMode(NOTE[cNOTE], INPUT);
for (int cLED = 0; cLED < NBITS; cLED++) pinMode(LEDS[cLED], OUTPUT);
pinMode(OW, INPUT_PULLUP); // Used for overwrite switch
pinMode(NEXT, INPUT_PULLUP);
display(loadingDisplay[1]);
MIDI.begin(1); // was using MIDI_CHANNEL_OFF
MIDI.setHandleClock(clocksync);
MIDI.setHandleControlChange(midisettings);
display(loadingDisplay[2]);
for (int i = 0; i < 6; i++){
current[i] = NULL;
head[i] = NULL;
nstep[i] = 0;
mute[i] = LOW;
}
display(loadingDisplay[3]);
for (int cOCTAVE = 0; cOCTAVE < NOCTAVES; cOCTAVE++) kboard[cOCTAVE] = 0;
dpad = 0;
arp[0] = 0;
arp[1] = 0;
cap_read = 0;
channel = (byte) 1;
display(loadingDisplay[4]);
while (!cap.begin(0x5A)) delay(10); // If MPR121 is not ready, wait for it
display(loadingDisplay[5]);
loadAll();
last_save = millis();
last_gate = millis();
last_next = millis();
}
void loop() {
cap_read = cap.touched();
MIDI.read();
if (next_step != (bool) !digitalRead(NEXT)) { // Manual step control
next_step = (bool) !digitalRead(NEXT);
if (millis() > last_next+DEBOUNCE && next_step == HIGH) {
last_next = millis();
sem_beat++;
}
}
if ((cap_read >> 8) & 1) { // Only for now! Needed to change channel
for (int i=0; i<NBITS; i++) digitalWrite(LEDS[i], LOW);
digitalWrite(LEDS[channel-1], HIGH);
}
else if (current[channel-1] == NULL) display(analogRead(channel));
else display(current[channel-1]->stepnumber);
plus_step = plus_step || (bool) ((cap_read >> PLUS) & 1);
minus_step = minus_step || (bool) ((cap_read >> MINUS) & 1);
clear_step = clear_step || (bool) ((cap_read >> DEL) & 1);
arpeggiating = (bool) ((cap_read >> ARP) & 1);
overwrite = digitalRead(OW);
if (chan_up != (bool) ((cap_read >> 8) & 1)) { // Used to increase channel with a button because I don't have a rotary switch (yet!)
chan_up = (bool) ((cap_read >> 8) & 1);
if (chan_up == HIGH) {
channel++;
if (channel > 6) channel = (byte) 1;
}
}
if (sem_beat > 0) {
sem_beat--;
if (sem_gate > 0) { // If step was shorter than GATE, close all open notes before next step
sem_gate--;
if (arpeggiating) playNote((arp[0]*NKEYS)+arp[1], LOW, channel);
for (int chan = 0; chan < 6; chan++) {
if (current[chan] == NULL) continue;
for (int i = 0; i < NOCTAVES; i++)
for (int j = 0; j < NKEYS; j++) // IF note was played AND user is not playing on this channel AND this note is not kept played
if (((current[chan]->kboard_s[i] >> j) & 1) && !(chan+1 != channel && ((kboard[i]>>j) & 1)) && !((current[chan]->next->kboard_s[i] >> j) & 1))
playNote((i*NKEYS)+j, LOW, (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++)
if (((current[chan]->dpad_s >> i) & 1) && !(chan+1 != channel && ((dpad>>i) & 1)))
playDrum(i, LOW, (byte) chan+1);
}
}
if (plus_step && minus_step) {
plus_step = LOW;
minus_step = LOW;
}
if (plus_step) {
plus_step = LOW;
if (nstep[channel-1] < MAXSTEP) insertStep(channel-1);
}
if (minus_step) {
minus_step = LOW;
if (nstep[channel-1] > 0) deleteStep(channel-1);
}
if (clear_step) {
clear_step = LOW;
if (current[channel-1] != NULL) {
for (int i = 0; i < NOCTAVES; i++) current[channel-1]->kboard_s[i] = 0;
current[channel-1]->dpad_s = 0;
}
}
nextStep(); // ALL STEPS INCREMENTED
display(current[channel-1]->stepnumber);
if (arpeggiating) {
while (npressed > 0) {
arp[1]++;
if (arp[1] == NKEYS) {
arp[1] = 0;
arp[0]++;
}
if (arp[0] == NOCTAVES) arp[0] = 0;
if ((kboard[arp[0]] >> arp[1]) & 1) {
playNote((arp[0]*NKEYS)+arp[1], HIGH, channel);
if (overwrite && current[channel-1] != NULL) {
for (int i=0; i<NOCTAVES; i++) current[channel-1]->kboard_s[i] = 0;
current[channel-1]->kboard_s[arp[0]] = current[channel-1]->kboard_s[arp[0]] | (1 << arp[1]);
}
break;
}
}
}
for (int chan = 0; chan < 6; chan++) {
if (mute[chan]) continue;
if (current[chan] != NULL) { // PLAY all step notes in all unmuted channels
for (int i = 0; i < NOCTAVES; i++)
for (int j = 0; j < NKEYS; j++)
if (((current[chan]->kboard_s[i] >> j) & 1) && !(chan+1 == channel && npressed > 0))
playNote((i*NKEYS)+j, HIGH, (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++) // Drums are played nonetheless because drums already layered won't overrule
if ((current[chan]->dpad_s >> i) & 1)
playDrum(i, HIGH, (byte) chan+1);
}
}
last_gate = millis();
sem_gate++;
}
if (sem_gate > 0 && (millis() - last_gate) > gate_length) {
sem_gate--;
if (arpeggiating) playNote((arp[0]*NKEYS)+arp[1], LOW, channel);
for (int chan = 0; chan < 6; chan++) {
if (current[chan] == NULL) continue;
for (int i = 0; i < NOCTAVES; i++)
for (int j = 0; j < NKEYS; j++)
if (((current[chan]->kboard_s[i] >> j) & 1) && !(chan+1 != channel && ((kboard[i]>>j) & 1)))
playNote((i*NKEYS)+j, LOW, (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++)
if (((current[chan]->dpad_s >> i) & 1) && !(chan+1 != channel && ((dpad>>i) & 1)))
playDrum(i, LOW, (byte) chan+1);
}
}
dpadhit = LOW;
difference = dpad ^ cap_read;
for (int c = 0; c < MAXDPAD; c++) {
if ((difference>>c) & 1) playDrum(c, ((cap_read>>c) & 1), channel);
if (dpadhit || ((cap_read>>c) & 1)) dpadhit = HIGH;
if (difference != 0) dpad = cap_read;
}
npressed = 0;
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
pinMode(OCTAVE[cOCTAVE], OUTPUT);
digitalWrite(OCTAVE[cOCTAVE], HIGH);
npressed += eval(scan(), cOCTAVE);
digitalWrite(OCTAVE[cOCTAVE], LOW);
pinMode(OCTAVE[cOCTAVE], INPUT);
}
if (current[channel-1] != NULL && overwrite) {
if (!arpeggiating && npressed > 0)
for (int i = 0; i < NOCTAVES; i++) {
difference = kboard[i] ^ current[channel-1]->kboard_s[i];
if (difference != 0) current[channel-1]->kboard_s[i] = kboard[i];
}
if (dpadhit) current[channel-1]->dpad_s = current[channel-1]->dpad_s | dpad; // Drum hits aren't exclusive!
}
if (millis() > last_save + (unsigned long) MINUTE*INTERVAL) {
saveAll();
last_save = millis();
}
}
// Hardware specific functions
int scan() { // This function reads the 12 NOTE pins and returns a struct
int output = 0;
for (int c = 0; c < NKEYS; c++) {
if (digitalRead(NOTE[c])) output = output | (1<<c);
}
return output;
}
void display(int number){
for(int i = 0; i < NBITS; i++) {
digitalWrite(LEDS[i], number & (unsigned short) 1);
number = number >> 1;
}
}
// NOTE Functions
int eval(int input, int nOct) {
int pressed = 0;
int sNOTE = nOct * 12;
difference = kboard[nOct] ^ input;
for (int c = 0; c < 12; c++) {
if (!arpeggiating && ((difference>>c) & 1)) playNote(c + sNOTE, ((input>>c) & 1), channel);
if (((input>>c) & 1)) pressed++;
}
if (difference != 0) kboard[nOct] = input;
return pressed;
}
void playNote(int c, bool status, byte chan) {
byte n = c + NOTEOffset;
if (status == HIGH) {
MIDI.sendNoteOn(n, velocity, chan);
}
else if (status == LOW) {
MIDI.sendNoteOff(n, velocity, chan);
}
}
void playDrum(int c, bool status, byte chan) {
// The note is first quantized to a pentathonic and then scaled up to start at C4.
byte n = (byte) (pentathonic[c] + drumOffset);
if (status == HIGH) {
MIDI.sendNoteOn(n, velocity, chan + (byte) DRUMSHIFT);
}
else if (status == LOW) {
MIDI.sendNoteOff(n, velocity, chan + (byte) DRUMSHIFT);
}
}
// MIDI callback functions
void clocksync(){
midiclock++;
if (midiclock == BPQN) {
midiclock = 0;
sem_beat++;
}
}
void midisettings(byte channel, byte number, byte value) {
if (number == 3) gate_length = (value*10)+10;
}
// List management functions
link newStep() {
return (link)malloc(sizeof(struct SequencerStep));
}
bool insertStep(byte chan) {
// Creates a new enpty step and places it as next step in the channel passed as argument
link newS = newStep();
link buffer;
if (newS == NULL) {
display(63);
delay(500);
return LOW;
}
for (int i = 0; i < NOCTAVES; i++) newS->kboard_s[i] = 0;
newS->dpad_s = 0;
if (head[chan] == NULL) {
newS->next = newS;
newS->stepnumber = (unsigned short) 0;
current[chan] = newS;
head[chan] = newS;
nstep[chan] = 1;
return HIGH;
}
newS->stepnumber = current[chan]->stepnumber +1;
buffer = current[chan]->next;
current[chan]->next = newS;
newS->next = buffer;
int c = 0;
buffer = head[chan];
buffer->stepnumber = c;
c++;
buffer = buffer->next;
while(buffer != head[chan]) {
buffer->stepnumber = c;
c++;
buffer = buffer->next;
}
nstep[chan] = c;
return HIGH;
}
void nextStep() {
for (int chan=0; chan < 6; chan++) {
if (head[chan] == NULL) continue;
current[chan] = current[chan]->next;
}
}
bool deleteStep(byte chan) {
if (nstep[chan] < 1) return LOW;
if (nstep[chan] == 1) {
free(current[chan]);
head[chan] = NULL;
current[chan] = NULL;
return HIGH;
}
link buffer = current[chan];
while (buffer->next != current[chan]) buffer = buffer->next; // Search for previous step
buffer->next = current[chan]->next; // Skip step which is being deleted
if (current[chan] == head[chan]) head[chan] = head[chan]->next; // If deleting head, head moves forward
free(current[chan]); // Step is actually deleted
current[chan] = buffer; // Current step becomes previous step
int c = 0;
buffer = head[chan];
buffer->stepnumber = c;
c++;
buffer = buffer->next;
while(buffer != head[chan]) {
buffer->stepnumber = c;
c++;
buffer = buffer->next;
}
nstep[chan] = c;
return HIGH;
}
// SAVING FUNCTIONS
void saveAll() {
int currAddr = (int) sizeof(save_p);
link buffer;
for (int c=0; c<MAXCHANNEL; c++) {
display(loadingDisplay[c]);
if (current[c] == NULL) {
saveH.headAddr[c] = -1;
saveH.tailAddr[c] = -1;
continue;
}
buffer = head[c];
saveH.headAddr[c] = currAddr;
currAddr = saveStep(buffer, currAddr);
buffer = buffer->next;
while (buffer != head[c]) {
currAddr = saveStep(buffer, currAddr);
buffer = buffer->next;
}
saveH.tailAddr[c] = currAddr;
}
saveHead(saveH);
}
void loadAll() {
saveH = loadHead();
int currAddr = saveH.headAddr[0];
link buffer;
for (int c=0; c<MAXCHANNEL; c++) {
display(loadingDisplay[c]);
if (saveH.headAddr[c] < 0) continue;
head[c] = newStep();
current[c] = head[c];
currAddr = saveH.headAddr[c];
currAddr = loadStep(head[c], currAddr);
buffer = head[c];
while (currAddr < saveH.tailAddr[c]) {
link newS = newStep();
currAddr = loadStep(newS, currAddr);
buffer->next = newS;
buffer = newS;
}
buffer->next = head[c];
}
}
save_p loadHead() {
save_p save;
byte* pointer = (byte*) (void*) &save;
int addr = 0;
for (int i=0; i < (int) sizeof(save_p); i++) {
*pointer = EEPROM.read(addr);
addr++;
pointer++;
}
return save;
}
void saveHead(save_p save) {
byte* pointer = (byte*) (void*) &save;
int addr = 0;
for (int i=0; i < (int) sizeof(save_p); i++){
EEPROM.update(addr, *pointer);
addr++;
pointer++;
}
}
int saveStep(link curr_step, int addr) {
step buffer = *curr_step;
buffer.next = (link) (addr + (int) sizeof(SequencerStep));
byte* pointer = (byte*) (void*) &buffer;
for (int i=0; i < (int) sizeof(SequencerStep); i++) {
EEPROM.update(addr, *pointer);
pointer++;
addr++;
}
return addr;
}
int loadStep(link step, int addr) {
byte* pointer = (byte*) (void*) step;
for (int i=0; i<(int) sizeof(SequencerStep); i++) {
*pointer = EEPROM.read(addr);
pointer++;
addr++;
}
return addr;
}