cv-keyboard/cvkeyboard.ino

260 lines
7.1 KiB
Arduino
Raw Normal View History

2019-06-28 01:03:40 +02:00
#include <CapacitiveSensor.h>
#include <MIDI.h>
#include <HID.h>
#define NOTEOffset 36
#define drumOffset 60
#define MINUTE 60000
#define MIDICLOCK 0xf8
#define MAXKEYS 48
#define MAXDPAD 3
2018-10-31 17:18:50 +01:00
MIDI_CREATE_DEFAULT_INSTANCE();
2019-06-28 01:03:40 +02:00
typedef struct SequencerStep* link;
typedef struct OCTAVEStatus { // This struct is for an OCTAVE status. Each bool is for 1 NOTE
bool stat[12];
int nOct;
} octst;
2018-10-31 17:18:50 +01:00
typedef struct SequencerStep {
2019-06-28 01:03:40 +02:00
bool kboard_s[MAXKEYS];
bool dpad_s[MAXDPAD];
link next;
} step;
// PIN DECLARATIONS
int NOTE[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int OCTAVE[4] = { // Pins associated to each OCTAVE's contact bar
12, 9, 8, 10 };
int SEND[3] = { // Pins used as sender for capacitive touch buttons
5, 4, 16 };
int RECEIVE[3] = { // Pins used as receiver for capacitive touch buttons
6, 3, 17 };
int OW = 2; // Pin used for overwrite switch
int DEL = -1; // Pin used for delete button
2019-06-28 00:14:44 +02:00
int ADD = 14; // Pin used for add button
// GLOBAL SETTINGS
2019-06-28 00:14:44 +02:00
//bool overwrite; // Step content is overwritten with pressed keys, could not be needed
// PLACEHOLDERS
byte velocity = 100; //
byte channel = 1; //
int bpm = 360; //
// SEQUENCER POINTERS
link head, tail, current;
// SYSTEM VARIABLES
int nstep = 0; // Keeps track of the sequencer steps
int arp = 0; // Keeps track of last played NOTE if arpeggiating
int midiclock = 0; // Used to sync with MIDI clock
int sem_beat = 0; // Basic semaphore used to sync with MIDI beat
int sem_gate = 0; // Basic semaphore used for gate timing
unsigned long last_gate = 0; // Gate start time for last sequencer step
unsigned long gate_length = 200; // ms of keypress if arpeggiator
bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[MAXKEYS]; // Last status of keyboard
bool dpad[MAXDPAD]; // Last status of Capacitive Buttons
CapacitiveSensor* bCap[MAXDPAD];
2018-11-11 01:11:49 +01:00
void setup() {
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
pinMode(OCTAVE[cOCTAVE], OUTPUT);
2018-10-31 17:18:50 +01:00
}
for (int cNOTE = 0; cNOTE < 12; cNOTE++) {
pinMode(NOTE[cNOTE], INPUT);
2018-10-31 17:18:50 +01:00
}
for (int cButton = 0; cButton < MAXDPAD; cButton++) { // Capacitive Buttons configuration
bCap[cButton] = new CapacitiveSensor(SEND[cButton], RECEIVE[cButton]); // Initialized
bCap[cButton]->set_CS_AutocaL_Millis(0xFFFFFFFF); // No recalibration
bCap[cButton]->set_CS_Timeout_Millis(200); // Timeout set to 200ms (instead of 2s)
dpad[cButton] = LOW; // Button starts LOW
}
for (int cStat = 0; cStat < MAXKEYS; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF);
2018-10-31 17:18:50 +01:00
Serial.begin(115200);
2019-06-28 01:03:40 +02:00
pinMode(OW, INPUT_PULLUP); // Used for overwrite switch
pinMode(ADD, INPUT_PULLUP); // Used for overwrite switch
}
void loop() {
sync();
if (sem_beat > 0) {
sem_beat--;
if (sem_gate > 0) { // If step was shorter than gate, close all open notes before next step
sem_gate--;
2019-06-28 01:03:40 +02:00
for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, !current->kboard_s[i]);
for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, !current->dpad_s[i]);
}
2019-06-28 00:14:44 +02:00
if (digitalRead(ADD) && digitalRead(OW)) insertStep();
if (digitalRead(ADD) && !digitalRead(OW)) deleteStep(); // Placeholder because I miss a button
nextStep();
if (current != NULL) { // Play all step notes and begin counting for gate
2019-06-28 01:03:40 +02:00
for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, current->kboard_s[i]);
for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, current->dpad_s[i]);
last_gate = millis();
sem_gate++;
}
}
if (sem_gate > 0 && (millis() - last_gate) > gate_length) {
sem_gate--;
2019-06-28 01:03:40 +02:00
for (int i = 0; i < MAXKEYS; i++) if (current->kboard_s[i]) playNOTE(i, !current->kboard_s[i]);
for (int i = 0; i < MAXDPAD; i++) if (current->dpad_s[i]) playDrum(i, !current->dpad_s[i]);
}
dpadhit = LOW;
for (int cButton = 0; cButton < MAXDPAD; cButton++) {
dpad[cButton] = evalButton(bCap[cButton], dpad[cButton], cButton);
2019-06-28 01:03:40 +02:00
dpadhit = (dpad[cButton] || dpadhit);
}
npressed = 0;
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
digitalWrite(OCTAVE[cOCTAVE], HIGH);
npressed += eval(scan(cOCTAVE));
digitalWrite(OCTAVE[cOCTAVE], LOW);
}
2019-06-28 00:14:44 +02:00
if (digitalRead(OW)) {
2019-06-28 01:03:40 +02:00
if (npressed > 0) for (int i = 0; i < MAXKEYS; i++) current->kboard_s[i] = kboard[i];
if (dpadhit) for (int i = 0; i < MAXDPAD; i++) current->dpad_s[i] = dpad[i];
}
2018-10-31 17:21:02 +01:00
}
// Hardware specific functions
2019-03-04 18:56:20 +01:00
octst scan(int nOct) { // This function reads the 12 NOTE pins and returns a struct
int c; // with 1 bool for each NOTE
octst output;
2018-10-31 17:18:50 +01:00
output.nOct = nOct;
2018-11-11 01:11:49 +01:00
for (c = 0; c < 12; c++) {
output.stat[c] = digitalRead(NOTE[c]);
2018-11-11 01:11:49 +01:00
}
return output;
2018-11-11 01:11:49 +01:00
}
bool evalButton(CapacitiveSensor* b, bool value, int note_number) {
long sensor = b->capacitiveSensor(1);
if (sensor > 15) {
if (value) return HIGH;
else {
playDrum(note_number, HIGH);
return HIGH;
}
}
else {
if (!value) return LOW;
else {
playDrum(note_number, LOW);
return LOW;
}
}
}
// NOTE Functions
int eval(octst input) {
int pressed = 0;
int sNOTE = input.nOct * 12;
for (int c = 0; c < 12; c++) {
if (input.stat[c] ^ kboard[c + sNOTE]) {
playNOTE(c + sNOTE, input.stat[c]);
kboard[c + sNOTE] = input.stat[c];
}
if (kboard[c + sNOTE] == HIGH) pressed++;
2018-10-31 17:18:50 +01:00
}
return pressed;
2018-11-11 01:11:49 +01:00
}
void playNOTE(int c, bool status) {
byte n = c + NOTEOffset;
if (status == HIGH) {
2019-06-28 01:03:40 +02:00
MIDI.sendNoteOn(n, velocity, channel);
}
else if (status == LOW) {
2019-06-28 01:03:40 +02:00
MIDI.sendNoteOff(n, velocity, channel);
}
}
void playDrum(int c, bool status) {
byte n = c + drumOffset;
if (status == HIGH) {
2019-06-28 01:03:40 +02:00
MIDI.sendNoteOn(n, velocity, (byte)7);
}
else if (status == LOW) {
2019-06-28 01:03:40 +02:00
MIDI.sendNoteOff(n, velocity, (byte)7);
}
}
// Sync functions
void sync() {
if (Serial.available() && Serial.read() == MIDICLOCK) {
midiclock++;
if (midiclock == 0 && sem_beat == 0) sem_beat++;
else if (midiclock == 24) midiclock = 0;
}
}
// List management functions
link newStep() {
return (link)malloc(sizeof(struct SequencerStep));
}
bool insertStep() {
link newS = newStep();
if (newS == NULL) {
free(newS);
return LOW;
}
2019-06-28 01:03:40 +02:00
for (int i = 0; i < MAXKEYS; i++) newS->kboard_s[i] = kboard[i];
for (int i = 0; i < MAXDPAD; i++) newS->dpad_s[i] = dpad[i];
if (nstep == 0) {
newS->next = newS;
current = newS;
head = newS;
}
else {
newS->next = current->next;
current->next = newS;
}
nstep++;
return HIGH;
}
void nextStep() {
current = current->next;
}
bool deleteStep() {
if (nstep < 1) return LOW;
if (nstep == 1) {
free(current);
head = NULL;
current = NULL;
}
else {
link buffer = current->next->next;
free(current->next);
current->next = buffer;
}
nstep--;
return HIGH;
}