cv-keyboard/cvkeyboard.ino

395 lines
11 KiB
Arduino
Raw Normal View History

2019-06-28 01:03:40 +02:00
#include <MIDI.h>
#include <HID.h>
#include <Wire.h>
#include <Adafruit_MPR121.h>
2019-06-28 01:03:40 +02:00
#define BPQN 24 // Ableton sends 24, VCV rack only one, by standard should be 24?
#define NOTEOffset 36
2019-06-30 00:39:01 +02:00
#define DRUMSHIFT 6
#define drumOffset 60
#define MINUTE 60000
#define MIDICLOCK 0xf8
#define MAXKEYS 48
#define MAXDPAD 7
#define MAXSTEP 64
#define NBITS 6
#define DEBOUNCE 100
2018-10-31 17:18:50 +01:00
MIDI_CREATE_DEFAULT_INSTANCE();
2019-06-28 01:03:40 +02:00
typedef struct SequencerStep* link;
typedef struct OCTAVEStatus { // This struct is for an OCTAVE status. Each bool is for 1 NOTE
bool stat[12];
int nOct;
} octst;
2018-10-31 17:18:50 +01:00
typedef struct SequencerStep {
2019-06-30 00:39:01 +02:00
bool clean = LOW;
2019-06-28 01:03:40 +02:00
bool kboard_s[MAXKEYS];
bool dpad_s[MAXDPAD];
unsigned short stepnumber;
link next;
} step;
// PIN DECLARATIONS
int NOTE[12] = { // Pins used to read each note (C is 0, B is 11)
22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 };
int OCTAVE[4] = { // Pins associated to each OCTAVE's contact bar
12, 9, 8, 10 };
int LEDS[NBITS] = { // Pins used for leds
5, 4, 2, 14, 16, 18 };
int OW = 3; // Pin used for overwrite switch
int NEXT = 51; // Pin used for next step switch
int DEL = 11; // Capacitive button used for DELETE button
int PLUS = 10; // Capacitive button used for PLUS button
int MINUS = 9; // Capacitive button used for MINUS button
// GLOBAL SETTINGS
int pentathonic[10] = { // Used to quantize drum notes
0, 2, 5, 7, 9, 12, 14, 17, 19, 21 };
// PLACEHOLDERS
byte velocity = 100; //
int bpm = 360; //
2019-06-30 00:39:01 +02:00
// SEQUENCER POINTERS AND RELATED ARRAYS
link head[6];
link current[6];
link previous;
unsigned short nstep[6]; // Keeps track of the sequencer steps
bool mute[6];
byte channel; // Current selected channel. Drums are shifted of DRUMSHIFT channels (so channels can only be 6)
// SYSTEM VARIABLES
int arp = 0; // Keeps track of last played NOTE if arpeggiating
int midiclock = 0; // Used to sync with MIDI clock
bool plus_step = LOW; // This is used to remember the addition of a step
bool minus_step = LOW; // This is used to remember the deletion of a step
bool clear_step = LOW; // This is used to remember the clearing of a step
2019-06-30 00:39:01 +02:00
bool chan_up = LOW; // Only for now because I have few buttons :C
bool next_step = LOW; // Used to wait for a full switch cycle
int sem_beat = 0; // Basic semaphore used to sync with MIDI beat
int sem_gate = 0; // Basic semaphore used for gate timing
unsigned long last_gate = 0; // Gate start time for last sequencer step
unsigned long gate_length = 1000; // ms of keypress if arpeggiator
unsigned long last_next = 0;
bool dpadhit = LOW; // If any drum pad has been hit in this cycle, this is true
int npressed; // Number of keys pressed, used to avoid doing anything when no keys are pressed
bool kboard[MAXKEYS]; // Last status of keyboard
bool dpad[MAXDPAD]; // Last status of Capacitive Buttons
int cap_read = 0;
Adafruit_MPR121 cap = Adafruit_MPR121();
2018-11-11 01:11:49 +01:00
void setup() {
2019-06-28 01:48:24 +02:00
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) pinMode(OCTAVE[cOCTAVE], OUTPUT);
for (int cNOTE = 0; cNOTE < 12; cNOTE++) pinMode(NOTE[cNOTE], INPUT);
for (int cLED = 0; cLED < NBITS; cLED++) pinMode(LEDS[cLED], OUTPUT);
while (!cap.begin(0x5A)) delay(10); // If MPR121 is not ready, wait for it
for (int cStat = 0; cStat < MAXKEYS; cStat++) kboard[cStat] = LOW; // All keyboard keys start LOW
MIDI.begin(MIDI_CHANNEL_OFF);
Serial.begin(115200); // Uncomment this if you use Hairless and set baud rate
2019-06-28 01:03:40 +02:00
pinMode(OW, INPUT_PULLUP); // Used for overwrite switch
pinMode(NEXT, INPUT_PULLUP); // Used for overwrite switch
2019-06-30 02:55:50 +02:00
for (int i = 0; i < 6; i++){
2019-06-30 00:39:01 +02:00
current[i] = NULL;
head[i] = NULL;
nstep[i] = 0;
mute[i] = LOW;
}
2019-06-30 02:55:50 +02:00
channel = (byte) 1;
for (int i=0; i<NBITS; i++) {
digitalWrite(LEDS[i], HIGH);
delay(10);
}
last_gate = millis();
last_next = millis();
display(0);
}
void loop() {
sync();
cap_read = cap.touched();
if ((cap_read >> 8) & 1) { // Only for now!
for (int i=0; i<NBITS; i++) digitalWrite(LEDS[i], LOW);
digitalWrite(LEDS[channel-1], HIGH);
}
else if (current[channel-1] == NULL) display(analogRead(channel));
else display(current[channel-1]->stepnumber);
plus_step = plus_step || ((cap_read >> PLUS) & 1);
minus_step = minus_step || ((cap_read >> MINUS) & 1);
clear_step = clear_step || ((cap_read >> DEL) & 1);
if (chan_up != (bool) ((cap_read >> 8) & 1)) { // Used to increase channel with a button because I don't have a rotary switch (yet!)
chan_up = (bool) ((cap_read >> 8) & 1);
if (chan_up == HIGH) {
channel++;
if (channel > 6) channel = (byte) 1;
}
}
2019-06-28 01:48:24 +02:00
if (sem_beat > 0) {
sem_beat--;
if (sem_gate > 0) { // If step was shorter than GATE, close all open notes before next step
sem_gate--;
2019-06-30 02:55:50 +02:00
for (int chan = 0; chan < 6; chan++) {
2019-06-30 00:39:01 +02:00
if (mute[chan]) continue;
for (int i = 0; i < MAXKEYS; i++)
if (current[chan]->kboard_s[i] && !kboard[i] && !current[chan]->next->kboard_s[i])
playNote(i, !current[chan]->kboard_s[i], (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++)
if (current[chan]->dpad_s[i] && !dpad[i])
playDrum(i, !current[chan]->dpad_s[i], (byte) chan+1);
2019-06-30 00:39:01 +02:00
}
}
2019-06-30 00:39:01 +02:00
if (plus_step && minus_step) {
plus_step = LOW;
minus_step = LOW;
2019-06-30 00:39:01 +02:00
}
if (plus_step) {
plus_step = LOW;
if (nstep[channel-1] < MAXSTEP) insertStep(channel-1);
2019-06-30 00:39:01 +02:00
}
if (minus_step) {
minus_step = LOW;
if (nstep[channel-1] > 0) deleteStep(channel-1);
2019-06-30 00:39:01 +02:00
}
if (clear_step) {
clear_step = LOW;
if (current[channel-1] != NULL) {
for (int i = 0; i < MAXKEYS; i++) current[channel-1]->kboard_s[i] = LOW;
for (int i = 0; i < MAXDPAD; i++) current[channel-1]->dpad_s[i] = LOW;
}
}
2019-06-30 00:39:01 +02:00
nextStep(); // ALL STEPS INCREMENTED
2019-06-30 00:39:01 +02:00
display(current[channel-1]->stepnumber);
2019-06-30 02:55:50 +02:00
for (int chan = 0; chan < 6; chan++) {
2019-06-30 00:39:01 +02:00
if (mute[chan]) continue;
if (current[chan] != NULL) { // PLAY all step notes in all unmuted channels
if (!(npressed > 0 && chan == (int) channel-1))
for (int i = 0; i < MAXKEYS; i++)
if (current[chan]->kboard_s[i] && !kboard[i])
playNote(i, current[chan]->kboard_s[i], (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++) // Drums are played nonetheless because drums already layered won't overrule
if (current[chan]->dpad_s[i] && !dpad[i])
playDrum(i, current[chan]->dpad_s[i], (byte) chan+1);
2019-06-30 00:39:01 +02:00
}
}
2019-06-30 00:39:01 +02:00
last_gate = millis();
sem_gate++;
}
if (sem_gate > 0 && (millis() - last_gate) > gate_length) {
sem_gate--;
2019-06-30 02:55:50 +02:00
for (int chan = 0; chan < 6; chan++) {
2019-06-30 00:39:01 +02:00
if (mute[chan]) continue;
for (int i = 0; i < MAXKEYS; i++)
if (current[chan]->kboard_s[i] && !kboard[i])
playNote(i, !current[chan]->kboard_s[i], (byte) chan+1);
for (int i = 0; i < MAXDPAD; i++)
if (current[chan]->dpad_s[i] && !dpad[i])
playDrum(i, !current[chan]->dpad_s[i], (byte) chan+1);
2019-06-30 00:39:01 +02:00
}
}
dpadhit = LOW;
for (int cButton = 0; cButton < MAXDPAD; cButton++) {
if (( 1 & (cap_read >> cButton)) ^ dpad[cButton]) {
dpad[cButton] = (bool) 1 & (cap_read >> cButton);
playDrum(cButton, dpad[cButton], channel);
}
2019-06-28 01:03:40 +02:00
dpadhit = (dpad[cButton] || dpadhit);
}
npressed = 0;
for (int cOCTAVE = 0; cOCTAVE < 4; cOCTAVE++) {
digitalWrite(OCTAVE[cOCTAVE], HIGH);
npressed += eval(scan(cOCTAVE));
digitalWrite(OCTAVE[cOCTAVE], LOW);
}
2019-06-28 00:14:44 +02:00
if (current[channel-1] != NULL && digitalRead(OW)) {
if (npressed > 0) for (int i = 0; i < MAXKEYS; i++)
current[channel-1]->kboard_s[i] = kboard[i];
if (dpadhit) for (int i = 0; i < MAXDPAD; i++)
current[channel-1]->dpad_s[i] = dpad[i] || current[channel-1]->dpad_s[i]; // Drum hits aren't exclusive!
2019-06-30 00:39:01 +02:00
current[channel-1]->clean = LOW;
}
2018-10-31 17:21:02 +01:00
}
// Hardware specific functions
2019-03-04 18:56:20 +01:00
octst scan(int nOct) { // This function reads the 12 NOTE pins and returns a struct
int c; // with 1 bool for each NOTE
octst output;
2018-10-31 17:18:50 +01:00
output.nOct = nOct;
2018-11-11 01:11:49 +01:00
for (c = 0; c < 12; c++) {
output.stat[c] = digitalRead(NOTE[c]);
2018-11-11 01:11:49 +01:00
}
return output;
2018-11-11 01:11:49 +01:00
}
2019-06-28 01:48:24 +02:00
void display(int number){
for(int i = 0; i < NBITS; i++) {
digitalWrite(LEDS[i], number & (unsigned short) 1);
number = number >> 1;
}
2019-06-28 01:48:24 +02:00
}
// NOTE Functions
int eval(octst input) {
int pressed = 0;
int sNOTE = input.nOct * 12;
for (int c = 0; c < 12; c++) {
if (input.stat[c] ^ kboard[c + sNOTE]) {
2019-06-30 00:39:01 +02:00
playNote(c + sNOTE, input.stat[c], channel);
kboard[c + sNOTE] = input.stat[c];
}
if (kboard[c + sNOTE] == HIGH) pressed++;
2018-10-31 17:18:50 +01:00
}
return pressed;
2018-11-11 01:11:49 +01:00
}
2019-06-30 00:39:01 +02:00
void playNote(int c, bool status, byte chan) {
byte n = c + NOTEOffset;
if (status == HIGH) {
2019-06-30 00:39:01 +02:00
MIDI.sendNoteOn(n, velocity, chan);
}
else if (status == LOW) {
2019-06-30 00:39:01 +02:00
MIDI.sendNoteOff(n, velocity, chan);
}
}
2019-06-30 00:39:01 +02:00
void playDrum(int c, bool status, byte chan) {
// The note is first quantized to a pentathonic and then scaled up to start at C4.
byte n = (byte) (pentathonic[c] + drumOffset);
if (status == HIGH) {
2019-06-30 02:55:50 +02:00
MIDI.sendNoteOn(n, velocity, chan + (byte) DRUMSHIFT);
}
else if (status == LOW) {
2019-06-30 02:55:50 +02:00
MIDI.sendNoteOff(n, velocity, chan + (byte) DRUMSHIFT);
}
}
// Sync functions
void sync() {
if (next_step != (bool) !digitalRead(NEXT)) { // Used to increase channel with a button because I don't have a rotary switch (yet!)
next_step = (bool) !digitalRead(NEXT);
if (millis() > last_next+DEBOUNCE && next_step == HIGH) {
last_next = millis();
sem_beat++;
}
}
if (Serial.available()) {
if (Serial.read() == MIDICLOCK) {
//sem_beat++;
midiclock++;
if (midiclock == BPQN){
midiclock = 0;
sem_beat++;
}
2019-06-28 01:48:24 +02:00
}
}
}
// List management functions
link newStep() {
return (link)malloc(sizeof(struct SequencerStep));
}
2019-06-30 00:39:01 +02:00
bool insertStep(byte chan) {
// Creates a new enpty step and places it as next step in the channel passed as argument
link newS = newStep();
link buffer;
2019-06-30 02:55:50 +02:00
if (newS == NULL) {
display(63);
delay(500);
return LOW;
}
for (int i = 0; i < MAXKEYS; i++) newS->kboard_s[i] = LOW;
for (int i = 0; i < MAXDPAD; i++) newS->dpad_s[i] = LOW;
2019-06-30 02:55:50 +02:00
if (head[chan] == NULL) {
newS->next = newS;
newS->stepnumber = (unsigned short) 0;
2019-06-30 00:39:01 +02:00
current[chan] = newS;
head[chan] = newS;
nstep[chan] = 1;
return HIGH;
}
newS->stepnumber = current[chan]->stepnumber +1;
buffer = current[chan]->next;
current[chan]->next = newS;
newS->next = buffer;
int c = 0;
buffer = head[chan];
buffer->stepnumber = c;
c++;
buffer = buffer->next;
while(buffer != head[chan]) {
buffer->stepnumber = c;
c++;
buffer = buffer->next;
}
nstep[chan] = c;
return HIGH;
}
void nextStep() {
2019-06-30 02:55:50 +02:00
for (int chan=0; chan < 6; chan++) {
if (head[chan] == NULL) continue;
2019-06-30 00:39:01 +02:00
current[chan] = current[chan]->next;
}
}
2019-06-30 00:39:01 +02:00
bool deleteStep(byte chan) {
if (nstep[chan] < 1) return LOW;
if (nstep[chan] == 1) {
2019-06-30 02:55:50 +02:00
free(current[chan]);
2019-06-30 00:39:01 +02:00
head[chan] = NULL;
current[chan] = NULL;
return HIGH;
}
link buffer = current[chan];
while (buffer->next != current[chan]) buffer = buffer->next; // Search for previous step
buffer->next = current[chan]->next; // Skip step which is being deleted
if (current[chan] == head[chan]) head[chan] = head[chan]->next; // If deleting head, head moves forward
free(current[chan]); // Step is actually deleted
current[chan] = buffer; // Current step becomes previous step
int c = 0;
buffer = head[chan];
buffer->stepnumber = c;
c++;
buffer = buffer->next;
while(buffer != head[chan]) {
buffer->stepnumber = c;
c++;
buffer = buffer->next;
}
nstep[chan] = c;
return HIGH;
}